留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河流铊污染应急处置方法探究与应用

王盼新 吴昌永 胡映明 付丽亚 宋玉栋 席宏波 于茵 赵檬

王盼新,吴昌永,胡映明,等.河流铊污染应急处置方法探究与应用[J].环境工程技术学报,2022,12(1):308-313 doi: 10.12153/j.issn.1674-991X.20210398
引用本文: 王盼新,吴昌永,胡映明,等.河流铊污染应急处置方法探究与应用[J].环境工程技术学报,2022,12(1):308-313 doi: 10.12153/j.issn.1674-991X.20210398
WANG P X,WU C Y,HU Y M,et al.Exploration and application of emergency treatment methods for thallium pollution in rivers[J].Journal of Environmental Engineering Technology,2022,12(1):308-313 doi: 10.12153/j.issn.1674-991X.20210398
Citation: WANG P X,WU C Y,HU Y M,et al.Exploration and application of emergency treatment methods for thallium pollution in rivers[J].Journal of Environmental Engineering Technology,2022,12(1):308-313 doi: 10.12153/j.issn.1674-991X.20210398

河流铊污染应急处置方法探究与应用

doi: 10.12153/j.issn.1674-991X.20210398
基金项目: 国家重点研发计划项目(2020YFE0201500);中央级公益性科研院所基本科研业务专项(2020YSKY-022)
详细信息
    作者简介:

    王盼新(1990—),男,助理研究员,博士,主要研究方向为水污染控制技术,wangpanxin_hit@126.com

    通讯作者:

    宋玉栋(1982—),男,研究员,博士,长期从事水污染控制技术研究, songyd@craes.org.cn

  • 中图分类号: X522

Exploration and application of emergency treatment methods for thallium pollution in rivers

  • 摘要: 面对频发的铊污染事件,开发实用高效的应急除铊方法是防范生态环境风险和保障饮水安全的迫切需求。以某河流铊浓度异常事件为例,对比分析了直接混凝、氧化+混凝、氧化+吸附及硫化物沉淀法4种方法在铊污染应急处置中的效果和可行性。结果表明:硫化物沉淀法可将超标5倍左右的铊浓度降低到0.1 μg/L以下,达到GB 3838—2002《地表水环境质量标准》中集中式生活饮用水地表水源地铊浓度限值要求,通过投加NaOH维持河水pH为8~9,可有效减少H2S气体的产生。该方法成功应用于事件河流铊浓度异常的应急处置中,并取得了良好的效果。

     

  • 图  1  混凝法对河水中铊的去除效果

    Figure  1.  Removal effects of thallium from river water by coagulation

    图  2  KMnO4和NaClO 氧化及氧化+混凝对铊的去除效果

    Figure  2.  Removal effects of thallium from river water by KMnO4 and NaClO oxidation and coagulation after oxidation

    图  3  氧化+吸附法对河水中铊的去除效果

    Figure  3.  Removal effects of thallium from river water by oxidation + adsorption

    图  4  不同Na2S 投加量及不同投加模式下河水中铊的去除效果

    Figure  4.  Removal effects of thallium from river water by different dosages of Na2S with different dosing modes

  • [1] LIN T S, NRIAGU J. Thallium speciation in the great lakes[J]. Environmental Science & Technology,1999,33(19):3394-3397.
    [2] US EPA. Toxic and priority pollutants under the Clean Water Act[EB/OL]. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act.
    [3] CVJETKO P, CVJETKO I, PAVLICA M. Thallium toxicity in humans[J]. Arhiv Za Higijenu Rada i Toksikologiju,2010,61(1):111-119. doi: 10.2478/10004-1254-61-2010-1976
    [4] 生态环境部. 优先控制化学品名录(第二批)[A/OL]. [2021-07-20]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202011/W020201113571806102775.pdf.
    [5] 张红英, 陈永亨.铊的环境污染与迁移转化[J]. 广东微量元素科学,2000,7(10):1-6. doi: 10.3969/j.issn.1006-446X.2000.10.001

    ZHANG H Y, CHEN Y H. A review of thallium pollution migration and transformation[J]. Trace Elements Science,2000,7(10):1-6. doi: 10.3969/j.issn.1006-446X.2000.10.001
    [6] 生态环境部. 关于发布《电子工业水污染物排放标准》等8项标准(含标准修改单)的公告[A/OL]. [2021-07-20]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202012/t20201223_814469.html.
    [7] 陈永亨, 张平, 吴颖娟, 等.广东北江铊污染的产生原因与污染控制对策[J]. 广州大学学报(自然科学版),2013,12(4):26-31.

    CHEN Y H, ZHANG P, WU Y J, et al. The reasons and the control technology for thallium pollution in Beijiang, Guangdong Province[J]. Journal of Guangzhou University (Natural Science Edition),2013,12(4):26-31.
    [8] 余素华, 巢猛, 胡小芳.水源突发性铊污染的去除试验研究[J]. 城镇供水,2014(3):78-79. doi: 10.3969/j.issn.1002-8420.2014.03.023
    [9] 胡小芳, 巢猛.水源水中金属铊污染的应急处理研究[J]. 城镇供水,2016(4):73-77. doi: 10.3969/j.issn.1002-8420.2016.04.016
    [10] 梁国华, 蔡展航, 刘永志, 等.原水突发性铊污染应急处理研究[J]. 科技资讯,2014,12(11):120-124. doi: 10.3969/j.issn.1672-3791.2014.11.078

    LIANG G H, CAI Z H, LIU Y Z, et al. Research on the emergency treatment of raw water accidentlally polluted by thallium[J]. Science & Technology Information,2014,12(11):120-124. doi: 10.3969/j.issn.1672-3791.2014.11.078
    [11] HUANGFU X L, JIANG J, LU X X, et al. Adsorption and oxidation of thallium(Ⅰ) by a nanosized manganese dioxide[J]. Water, Air, & Soil Pollution,2014,226(1):1-9.
    [12] HUANGFU X L, JIANG J, MA J, et al. Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules[J]. Environmental Science & Technology,2013,47(18):10285-10292.
    [13] WILLIAMS-BEAM C, TWIDWELL L G. Removal of thallium from wastewater[M/OL]. [2021-07-20]. https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118804407.ch48.
    [14] 卢然, 王夏晖, 伍思扬, 等. 我国铅锌冶炼工业废水铊污染状况与处理技术[J]. 环境工程技术学报, 2021, 11(4): 763-768.

    LU R, WANG X H, WU S Y, et al. Thallium pollution status and treatment technology of wastewater from lead-zinc smelting industry in China[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 763-768.
    [15] XU H Y, LUO Y L, WANG P, et al. Removal of thallium in water/wastewater: a review[J]. Water Research,2019,165:114981. doi: 10.1016/j.watres.2019.114981
    [16] ZOU Y J, CHENG H J, WANG H N, et al. Thallium(Ⅰ) oxidation by permanganate and chlorine: kinetics and manganese dioxide catalysis[J]. Environmental Science & Technology,2020,54(12):7205-7216.
    [17] LIU J, LUO X W, SUN Y Q, et al. Thallium pollution in China and removal technologies for waters: a review[J]. Environment International,2019,126:771-790. doi: 10.1016/j.envint.2019.01.076
    [18] LIN T S, NRIAGU J. Revised hydrolysis constants for thallium(Ⅰ) and thallium(Ⅲ) and the environmental implications[J]. Journal of the Air & Waste Management Association,1998,48(2):151-156.
    [19] WAN S L, MA M H, LÜ L, et al. Selective capture of thallium(Ⅰ) ion from aqueous solutions by amorphous hydrous manganese dioxide[J]. Chemical Engineering Journal,2014,239:200-206. doi: 10.1016/j.cej.2013.11.010
    [20] 朱保虎, 陈小敏, 杨文, 等.改性沸石对水中微量汞的吸附性能[J]. 环境工程学报,2016,10(11):6261-6268. doi: 10.12030/j.cjee.201507019

    ZHU B H, CHEN X M, YANG W, et al. Characterization of trace mercury adsorption by modified zeolite[J]. Chinese Journal of Environmental Engineering,2016,10(11):6261-6268. doi: 10.12030/j.cjee.201507019
    [21] 张良静, 尚长健, 韩旭, 等. 锰氧化物对水体中铊的去除机制研究进展[J]. 环境科学研究, 2021, 34(6): 1387-1396.

    ZHANG L J, SHANG C J, HAN X, et al. Mechanisms of thallium removal from water by manganese oxides: a review[J]. Research of Environmental Sciences, 2021, 34(6): 1387-1396.
    [22] 易文杰, 刘妍妍, 林朋飞.水源重金属污染的供水应急处理技术研究[J]. 矿业研究与开发,2020,40(8):81-85.

    YI W J, LIU Y Y, LIN P F. Study on emergency treatment technology of water supply under the heavy metal pollution of water source[J]. Mining Research and Development,2020,40(8):81-85.
    [23] LI H S, ZHANG H G, LONG J Y, et al. Combined Fenton process and sulfide precipitation for removal of heavy metals from industrial wastewater: bench and pilot scale studies focusing on in-depth thallium removal[J]. Frontiers of Environmental Science & Engineering,2019,13(4):1-12.
    [24] BRODERIUS S J, SMITH L L. Effect of hydrogen sulfide on fish and invertebrates: Part Ⅱ. hydrogen sulfide determination and relationship between pH and sulfide toxicity. final report[R/OL]. [2021-06-20]. https://www.osti.gov/biblio/7292199.
    [25] DIMITROV R I, BOYANOV B S. Oxidation of metal sulphides and determination of characteristic temperatures by DTA and TG[J]. Journal of Thermal Analysis and Calorimetry,2000,61(1):181-189. ◇ doi: 10.1023/A:1010181112713
  • 加载中
图(4)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  227
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-12

目录

    /

    返回文章
    返回