留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

合成生物技术对生物多样性影响的评估探索

汪保卫 常江 王智文

汪保卫,常江,王智文.合成生物技术对生物多样性影响的评估探索[J].环境工程技术学报,2022,12(1):215-223 doi: 10.12153/j.issn.1674-991X.20210213
引用本文: 汪保卫,常江,王智文.合成生物技术对生物多样性影响的评估探索[J].环境工程技术学报,2022,12(1):215-223 doi: 10.12153/j.issn.1674-991X.20210213
WANG B W,CHANG J,WANG Z W.Evaluation exploration of the impacts of synthetic biotechnologies on biodiversity[J].Journal of Environmental Engineering Technology,2022,12(1):215-223 doi: 10.12153/j.issn.1674-991X.20210213
Citation: WANG B W,CHANG J,WANG Z W.Evaluation exploration of the impacts of synthetic biotechnologies on biodiversity[J].Journal of Environmental Engineering Technology,2022,12(1):215-223 doi: 10.12153/j.issn.1674-991X.20210213

合成生物技术对生物多样性影响的评估探索

doi: 10.12153/j.issn.1674-991X.20210213
基金项目: 生态环境部生物多样性调查、观测与评估项目(2019HB2096001006);国家自然科学基金面上项目(NSFC-21776209);中国博士后科学基金面上项目(2021M693355)
详细信息
    作者简介:

    汪保卫(1982—),男,博士后,主要从事代谢工程与合成生物技术研究,bw_wang@tju.edu.cn

    通讯作者:

    常江(1980—),男,研究员,主要从事生物多样性研究, changjiang@craes.org.cn

    王智文(1981—),男,副教授,主要从事代谢工程与合成生物学研究, zww@tju.edu.cn

  • 中图分类号: X176

Evaluation exploration of the impacts of synthetic biotechnologies on biodiversity

  • 摘要: 合成生物技术是近年来兴起的一类新兴生物技术,是现代生物技术的新发展阶段;在微生物细胞工厂、人工合成菌群、人工基因组合成、基因组编辑和基因驱动等多个领域取得了一系列重要进展,也获得了多国政府及产学研机构的大力支持。随着合成生物技术研究、开发与应用的深入发展,评估其对人类社会生存发展至关重要的生物多样性的影响成为一个重要课题。基于防范降低负面风险、促进有益开发应用和保护生物多样性的评估原则,采用综合考虑合成生物技术适用范围和基于合成生物技术的制品、组分和生物的安全性2个维度的评估方法定性分析了合成生物技术研究、开发与应用对生物多样性的影响,提出了应对其潜在风险的策略与建议,以期为合成生物技术的良性发展、造福社会提供参考。

     

  • 图  1  合成生物技术对生物多样性潜在风险的评估方法

    Figure  1.  Methods for evaluation of the potential risk of synthetic biotechnologies on biodiversity

  • [1] 常江.《生物多样性公约》中合成生物学的谈判进程及对我国履约的启示[J]. 环境保护,2018,46(23):28-31.

    CHANG J. The negotiation process of synthetic in convention on biological diversity and its implications to China[J]. EnvironmentalProtection,2018,46(23):28-31.
    [2] 宋健.保护生物多样性是全人类的共同责任[J]. 浙江林业,1994(4):1.
    [3] 叶晓婷.我国是生物多样性最丰富12国之一 五大祸端威胁中国生物安全[J]. 环境与生活,2013(11):26-30.
    [4] 冯晓娟, 米湘成, 肖治术, 等.中国生物多样性监测与研究网络建设及进展[J]. 中国科学院院刊,2019,34(12):1389-1398.

    FENG X J, MI X C, XIAO Z S, et al. Overview of Chinese biodiversity observation network (Sino BON)[J]. Bulletin of Chinese Academy of Sciences,2019,34(12):1389-1398.
    [5] 李爱农, 尹高飞, 张正健, 等.基于站点的生物多样性星空地一体化遥感监测[J]. 生物多样性,2018,26(8):819-827. doi: 10.17520/biods.2018052

    LI A N, YIN G F, ZHANG Z J, et al. Space-air-field integrated biodiversity monitoring based on experimental station[J]. Biodiversity Science,2018,26(8):819-827. doi: 10.17520/biods.2018052
    [6] 朱媛君, 山丹, 张晓, 等.揭示群落结构及其环境响应的联合物种分布模型的研究进展[J]. 应用生态学报,2018,29(12):4217-4225.

    ZHU Y J, SHAN D, ZHANG X, et al. Advances in joint species distribution models to reveal community structure and its environmental response[J]. Chinese Journal of Applied Ecology,2018,29(12):4217-4225.
    [7] 马克平, 朱敏, 纪力强, 等.中国生物多样性大数据平台建设[J]. 中国科学院院刊,2018,33(8):838-845.

    MA K P, ZHU M, JI L Q, et al. Establishing China infrastructure for big biodiversity data[J]. Bulletin of Chinese Academy of Sciences,2018,33(8):838-845.
    [8] National Academies of Sciences, Engineering, and Medicine. Biodefense in the age of synthetic biology[M/OL]. Washington DC: The National Academies Press, 2018. https://doi.org/10.17226/24890.
    [9] 中华人民共和国生物安全法[A/OL]. (2020-10-18)[2021-06-01]. http://www.xinhuanet.com/legal/2020-10/18/c_1126624481.htm.
    [10] BECKER J, WITTMANN C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products[J]. Angewandte Chemie (International Edition in English),2015,54(11):3328-3350. doi: 10.1002/anie.201409033
    [11] NETT R S, LAU W, SATTELY E S. Discovery and engineering of colchicine alkaloid biosynthesis[J]. Nature,2020,584(7819):148-153. doi: 10.1038/s41586-020-2546-8
    [12] HOLKENBRINK C, DING B J, WANG H L, et al. Production of moth sex pheromones for pest control by yeast fermentation[J]. Metabolic Engineering,2020,62:312-321. doi: 10.1016/j.ymben.2020.10.001
    [13] WANG D, WANG J H, SHI Y S, et al. Elucidation of the complete biosynthetic pathway of the main triterpene glycosylation products of Panax notoginseng using a synthetic biology platform[J]. Metabolic Engineering,2020,61:131-140. doi: 10.1016/j.ymben.2020.05.007
    [14] LOSOI P S, SANTALA V P, SANTALA S M. Enhanced population control in a synthetic bacterial consortium by interconnected carbon cross-feeding[J]. ACS Synthetic Biology,2019,8(12):2642-2650. doi: 10.1021/acssynbio.9b00316
    [15] KIM J K, CHEN Y, HIRNING A J, et al. Long-range temporal coordination of gene expression in synthetic microbial consortia[J]. Nature Chemical Biology,2019,15(11):1102-1109. doi: 10.1038/s41589-019-0372-9
    [16] GUTIÉRREZ N, GARRIDO D. Species deletions from microbiome consortia reveal key metabolic interactions between gut microbes[J]. mSystems, 2019, 4(4). doi: 10.1128/msystems.00185-19.
    [17] SADEGHPOUR M, VELIZ-CUBA A, OROSZ G, et al. Bistability and oscillations in co-repressive synthetic microbial consortia[J]. Quantitative Biology,2017,5(1):55-66. doi: 10.1007/s40484-017-0100-y
    [18] GARCÍA-JIMÉNEZ B, GARCÍA J L, NOGALES J. FLYCOP: metabolic modeling-based analysis and engineering microbial communities[J]. Bioinformatics,2018,34(17):i954-i963. doi: 10.1093/bioinformatics/bty561
    [19] MA Q, BI Y H, WANG E X, et al. Integrated proteomic and metabolomic analysis of a reconstructed three-species microbial consortium for one-step fermentation of 2-keto-L-gulonic acid, the precursor of vitamin C[J]. Journal of Industrial Microbiology & Biotechnology,2019,46(1):21-31.
    [20] MACCHI M, FESTA S, NIETO E, et al. Design and evaluation of synthetic bacterial consortia for optimized phenanthrene degradation through the integration of genomics and shotgun proteomics[J]. Biotechnology Reports,2021,29:e00588. doi: 10.1016/j.btre.2021.e00588
    [21] FENG S S, GONG L Q, ZHANG Y K, et al. Bioaugmentation potential evaluation of a bacterial consortium composed of isolated Pseudomonas and Rhodococcus for degrading benzene, toluene and styrene in sludge and sewage[J]. Bioresource Technology,2021,320:124329. doi: 10.1016/j.biortech.2020.124329
    [22] HUANG J M, YANG X N, WU Q H, et al. Application of independent immobilization in benzo[a]pyrene biodegradation by synthetic microbial consortium[J]. Environmental Science and Pollution Research,2019,26(20):21052-21058. doi: 10.1007/s11356-019-05477-4
    [23] KONG X X, JIANG J L, QIAO B, et al. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways[J]. Science of the Total Environment,2019,651:271-280. doi: 10.1016/j.scitotenv.2018.09.187
    [24] del VALLE I, FULK E M, KALVAPALLE P, et al. Translating new synthetic biology advances for biosensing into the earth and environmental sciences[J]. Frontiers in Microbiology,2021,11:618373. doi: 10.3389/fmicb.2020.618373
    [25] VANARSDALE E, TSAO C Y, LIU Y, et al. Redox-based synthetic biology enables electrochemical detection of the herbicides dicamba and roundup via rewired Escherichia coli[J]. ACS Sensors,2019,4(5):1180-1184. doi: 10.1021/acssensors.9b00085
    [26] CELLO J, PAUL A V, WIMMER E. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template[J]. Science,2002,297(5583):1016-1018. doi: 10.1126/science.1072266
    [27] GIBSON D G, GLASS J I, LARTIGUE C, et al. Creation of a bacterial cell controlled by a chemically synthesized genome[J]. Science,2010,329(5987):52-56. doi: 10.1126/science.1190719
    [28] HUTCHISON C A, CHUANG R Y, NOSKOV V N, et al. Design and synthesis of a minimal bacterial genome[J]. Science,2016,351(6280):aad6253. doi: 10.1126/science.aad6253
    [29] WU Y, LI B Z, ZHAO M, et al. Bug mapping and fitness testing of chemically synthesized chromosome X[J]. Science,2017,355(6329):eaaf4706. doi: 10.1126/science.aaf4706
    [30] XIE Z X, LI B Z, MITCHELL L A, et al. "Perfect" designer chromosome V and behavior of a ring derivative[J]. Science,2017,355(6329):eaaf4704. doi: 10.1126/science.aaf4704
    [31] SHAO Y Y, LU N, WU Z F, et al. Creating a functional single-chromosome yeast[J]. Nature,2018,560(7718):331-335. doi: 10.1038/s41586-018-0382-x
    [32] BOEKE J D, CHURCH G, HESSEL A, et al. The genome project-write[J]. Science,2016,353(6295):126-127. doi: 10.1126/science.aaf6850
    [33] LEDFORD H, CALLAWAY E. Pioneers of revolutionary CRISPR gene editing win chemistry Nobel[J]. Nature,2020,586(7829):346-347. doi: 10.1038/d41586-020-02765-9
    [34] WANG D, ZHANG F, GAO G P. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors[J]. Cell,2020,181(1):136-150. doi: 10.1016/j.cell.2020.03.023
    [35] STORCH G A. CRISPR tool scales up to interrogate a huge line-up of viral suspects[J]. Nature,2020,582(7811):188-189. doi: 10.1038/d41586-020-01447-w
    [36] GAO H R, GADLAGE M J, LAFITTE H R, et al. Superior field performance of waxy corn engineered using CRISPR-Cas9[J]. Nature Biotechnology,2020,38(5):579-581. doi: 10.1038/s41587-020-0444-0
    [37] CHOI S Y, WOO H M. CRISPRi-dCas12a: a dCas12a-mediated CRISPR interference for repression of multiple genes and metabolic engineering in cyanobacteria[J]. ACS Synthetic Biology,2020,9(9):2351-2361. doi: 10.1021/acssynbio.0c00091
    [38] ABDEL-MAWGOUD A M, STEPHANOPOULOS G. Improving CRISPR/Cas9-mediated genome editing efficiency in Yarrowia lipolytica using direct tRNA-sgRNA fusions[J]. Metabolic Engineering,2020,62:106-115. doi: 10.1016/j.ymben.2020.07.008
    [39] SMITH C J, CASTANON O, SAID K, et al. Enabling large-scale genome editing at repetitive elements by reducing DNA nicking[J]. Nucleic Acids Research,2020,48(9):5183-5195. doi: 10.1093/nar/gkaa239
    [40] ZHAO D D, LI J, LI S W, et al. Glycosylase base editors enable C-to-A and C-to-G base changes[J]. Nature Biotechnology,2021,39(1):35-40. doi: 10.1038/s41587-020-0592-2
    [41] KLEINSTIVER B P, PATTANAYAK V, PREW M S, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature,2016,529(7587):490-495. doi: 10.1038/nature16526
    [42] CHEN J S, DAGDAS Y S, KLEINSTIVER B P, et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy[J]. Nature,2017,550(7676):407-410. doi: 10.1038/nature24268
    [43] SINKINS S P, GOULD F. Gene drive systems for insect disease vectors[J]. Nature Reviews Genetics,2006,7(6):427-435. doi: 10.1038/nrg1870
    [44] JAMES A A. Gene drive systems in mosquitoes: rules of the road[J]. Trends in Parasitology,2005,21(2):64-67. doi: 10.1016/j.pt.2004.11.004
    [45] KYROU K, HAMMOND A M, GALIZI R, et al. A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in caged Anopheles gambiae mosquitoes[J]. Nature Biotechnology,2018,36(11):1062-1066. doi: 10.1038/nbt.4245
    [46] PROWSE T A, ADIKUSUMA F, CASSEY P, et al. A Y-chromosome shredding gene drive for controlling pest vertebrate populations[J]. Elife,2019,8:e41873. doi: 10.7554/eLife.41873
    [47] CONKLIN B R. On the road to a gene drive in mammals[J]. Nature,2019,566(7742):43-45. doi: 10.1038/d41586-019-00185-y
    [48] NEVE P. Gene drive systems: do they have a place in agricultural weed management[J]. Pest Management Science,2018,74(12):2671-2679. doi: 10.1002/ps.5137
    [49] ECKHOFF P A, WENGER E A, GODFRAY H C J, et al. Impact of mosquito gene drive on malaria elimination in a computational model with explicit spatial and temporal dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America,2017,114(2):E255-E264. doi: 10.1073/pnas.1611064114
    [50] BEAGHTON A, BEAGHTON P J, BURT A. Vector control with driving Y chromosomes: modelling the evolution of resistance[J]. Malaria Journal,2017,16(1):286. doi: 10.1186/s12936-017-1932-7
    [51] COLLINS J P. Gene drives in our future: challenges of and opportunities for using a self-sustaining technology in pest and vector management[J]. BMC Proceedings, 2018, 12(Suppl 8): 9.
    [52] JAMES S, COLLINS F H, WELKHOFF P A, et al. Pathway to deployment of gene drive mosquitoes as a potential biocontrol tool for elimination of malaria in sub-Saharan Africa: recommendations of a scientific working group[J]. American Journal of Tropical Medicine and Hygiene, 2018, 98(Suppl 6): 1-49.
    [53] 钱万强, 江海燕, 朱庆平, 等.国内外合成生物学资助体系及产业投入分析[J]. 中国基础科学,2014,16(1):47-50. doi: 10.3969/j.issn.1009-2412.2014.01.008

    QIAN W Q, JIANG H Y, ZHU Q P, et al. Analysis of the funding systems and industry investment of synthetic biology in China and main developed countries[J]. China Basic Science,2014,16(1):47-50. doi: 10.3969/j.issn.1009-2412.2014.01.008
    [54] 刘发鹏.合成生物学: 一种两用技术的机遇和挑战[J]. 科学中国人,2018(17):72-73.
    [55] YANG J G, XIE X Q, XIANG N, et al. Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(36):8509-8517. doi: 10.1073/pnas.1804992115
    [56] WU M R, JUSIAK B, LU T K. Engineering advanced cancer therapies with synthetic biology[J]. Nature Reviews Cancer,2019,19(4):187-195.
    [57] MILLER T E, BENEYTON T, SCHWANDER T, et al. Light-powered CO2 fixation in a chloroplast mimic with natural and synthetic parts[J]. Science,2020,368(6491):649-654. doi: 10.1126/science.aaz6802
    [58] BOLES K S, KANNAN K, GILL J, et al. Digital-to-biological converter for on-demand production of biologics[J]. Nature Biotechnology,2017,35(7):672-675. doi: 10.1038/nbt.3859
    [59] MEHR S H M, CRAVEN M, LEONOV A I, et al. A universal system for digitization and automatic execution of the chemical synthesis literature[J]. Science,2020,370(6512):101-108. doi: 10.1126/science.abc2986
    [60] 关正君, 裴蕾, 马库斯·施密特, 等.合成生物学生物安全风险评价与管理[J]. 生物多样性,2012,20(2):138-150.

    GUAN Z J, PEI L, SCHMIDT M, et al. Assessment and management of biosafety in synthetic biology[J]. Biodiversity Science,2012,20(2):138-150.
    [61] TANG T C, THAM E, LIU X Y, et al. Hydrogel-based biocontainment of bacteria for continuous sensing and computation[J]. Nature Chemical Biology,2021,17(6):724-731. doi: 10.1038/s41589-021-00779-6
    [62] YOO J I, SEPPÄLÄS O, MALLEY M A. Engineered fluoride sensitivity enables biocontainment and selection of genetically-modified yeasts[J]. Nature Communications,2020,11:5459. doi: 10.1038/s41467-020-19271-1
    [63] MASELKO M, HEINSCH S C, CHACÓN J M, et al. Engineering species-like barriers to sexual reproduction[J]. Nature Communications,2017,8(1):883. doi: 10.1038/s41467-017-01007-3
    [64] YOUNG R E B, PURTON S. Codon reassignment to facilitate genetic engineering and biocontainment in the chloroplast of Chlamydomonas reinhardtii[J]. Plant Biotechnology Journal,2016,14(5):1251-1260. doi: 10.1111/pbi.12490
    [65] CAI Y Z, AGMON N, CHOI W J, et al. Intrinsic biocontainment: multiplex genome safeguards combine transcriptional and recombinational control of essential yeast genes[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(6):1803-1808. ⊗ doi: 10.1073/pnas.1424704112
  • 加载中
图(1)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  126
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-01

目录

    /

    返回文章
    返回