留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

净水除磷基质的综合筛选与长效建模预测

王明玉 朱琳 王鹏

王明玉,朱琳,王鹏.净水除磷基质的综合筛选与长效建模预测[J].环境工程技术学报,2022,12(1):119-126 doi: 10.12153/j.issn.1674-991X.20210155
引用本文: 王明玉,朱琳,王鹏.净水除磷基质的综合筛选与长效建模预测[J].环境工程技术学报,2022,12(1):119-126 doi: 10.12153/j.issn.1674-991X.20210155
WANG M Y,ZHU L,WANG P.Comprehensive screening and prediction of effective and lasting water purification and phosphorus removal substrates[J].Journal of Environmental Engineering Technology,2022,12(1):119-126 doi: 10.12153/j.issn.1674-991X.20210155
Citation: WANG M Y,ZHU L,WANG P.Comprehensive screening and prediction of effective and lasting water purification and phosphorus removal substrates[J].Journal of Environmental Engineering Technology,2022,12(1):119-126 doi: 10.12153/j.issn.1674-991X.20210155

净水除磷基质的综合筛选与长效建模预测

doi: 10.12153/j.issn.1674-991X.20210155
基金项目: 国家重点研发计划项目(2020YFC1807100)
详细信息
    作者简介:

    王明玉(1961—),男,教授,博士,主要从事水环境模拟与污染控制研究,mwang@ucas.ac.cn

  • 中图分类号: X703

Comprehensive screening and prediction of effective and lasting water purification and phosphorus removal substrates

  • 摘要: 为筛选效果好且长效的除磷基质,选取电气石陶粒、赤泥陶粒、凹凸棒石、硅胶、海绵铁、活性炭、火山岩、沸石8种基质进行磷静态吸附试验,优选3种基质进行单基质柱状除磷渗流试验和微观结构表征,获取基质的除磷特征,并依据渗流试验数据建模预测长效除磷效果。结果表明:8种基质对磷的吸附能力差异较大,其中电气石陶粒、赤泥陶粒、沸石吸附能力较好;渗流试验中,电气石陶粒在111 d后对磷的去除率仍维持在67%,赤泥陶粒则降至37%;不同基质出水总磷浓度随时间呈现不同变化规律,其统计模型预测性较好,经建模预测得出,电气石陶粒在第160天左右对磷的去除率降至50%,第300天左右达到吸附饱和,赤泥陶粒则在第150天左右达到吸附饱和。基质微观结构(比表面积、表面特征)及化学元素组成等对除磷效果有明显影响。

     

  • 图  1  8种基质实物

    Figure  1.  Physical map of eight substrates

    图  2  试验装置示意

    Figure  2.  Schematic diagram of experimental device

    图  3  8种基质的磷静态吸附曲线

    Figure  3.  Static phosphorus adsorption curves of eight substrates

    图  4  3种基质Langmuir和Freundlich拟合曲线

    Figure  4.  Langmuir and Freundlich fitting curves of three substrates

    图  5  3种基质柱状渗流试验出水总磷浓度变化

    注:电气石陶粒、赤泥陶粒柱运行111 d,沸石柱运行99 d。

    Figure  5.  Variations of total phosphorus concentration in the effluent of the columnar percolation test of three substrates

    图  6  出水总磷浓度预测值与实测值对比

    Figure  6.  Comparison of the predicted value of phosphorus effluent concentration with the true value

    图  7  3种基质表面扫描电镜图(×5 000)

    Figure  7.  Scanning electron micrographs of three substrates’ surfaces (×5 000)

    图  8  3种基质孔径分布

    Figure  8.  Pore size distribution of three substrates

    表  1  3种基质等温吸附拟合参数

    Table  1.   Three substrates isotherm adsorption fitting parameters

    基质 Langmuir模型 Freundlich模型
    qmax/(mg/g) KL/(L/mg) R2 KF/(mg/g) 1/n R2
    电气石陶粒 0.669 0.085 0.927 0.112 0.409 0.959
    赤泥陶粒 0.571 0.016 0.981 0.019 0.660 0.978
    沸石 0.642 0.008 0.969 0.008 0.782 0.951
    下载: 导出CSV

    表  2  3种基质在 ${C}_{\mathrm{e}}$ 小于30 mg/L的线性拟合参数

    Table  2.   Linear fitting parameters of three substrates at Ce less than 30 mg/L

    基质 Kd R2
    电气石陶粒 0.035 6 0.957
    赤泥陶粒 0.007 0 0.983
    沸石 0.002 6 0.972
    下载: 导出CSV

    表  3  3种基质不同时段试验数据的拟合及其预测精度对比

    Table  3.   Comparing the fitting and prediction accuracy of the experimental data of 3 kinds of substrates in different periods

    基质 试验时段/d 拟合方程 R2 均方根误差 平均绝对百分比误差/%
    0~30 y=0.043 32x 0.995 0.7 23
    赤泥陶粒 0~62 y=0.037 7x 0.979 0.5 14
    0~111 y=0.034x 0.980
    0~30 y=0.496ln(x−0.898)+3.4 0.900 0.5 7.5
    沸石 0~62 y=0.37ln(x−0.98)+3.66 0.840 0.3 4.4
    0~99 y=0.316ln(x−0.99)+3.789 0.811
    电气石陶粒 0~30 y= 0.000 724x (最佳拟合) 0.417 0.7 169
    电气石陶粒(多项式) 0~62 y=0.000 316x2−0.011x+0.08 0.935 0.7 50
    电气石陶粒(多项式) 34~62 y=0.000 487x2−0.024 1x+0.283 0.934 1.13 81
    电气石陶粒(线性) 34~62 y=0.022 43x−0.787 0.909 0.27 21
    电气石陶粒(多项式) 0~111 y=0.000 119x2+0.002x−0.05 0.906
    电气石陶粒(线性) 34~111 y=0.018 9x−0.587 0.864
    下载: 导出CSV

    表  4  电气石陶粒和赤泥陶粒出水总磷浓度预测

    Table  4.   Prediction of total phosphorus effluent concentration of tourmaline ceramsite and red mud ceramsite mg/L

    基质 运行时间/d
    120 130 140 147 163 250 295
    电气石陶粒 1.68 1.87 2.06 2.25 2.50 4.14 5.00
    赤泥陶粒 4.08 4.42 4.76 5.00
    下载: 导出CSV

    表  5  3种基质的比表面积、总孔体积及平均孔径

    Table  5.   Specific surface area, total pore volume and average pore diameter of three substrates

    基质 比表面积/(m2/g) 总孔体积/(cm3/g) 平均孔径/nm
    电气石陶粒 55.50 0.052 2 3.763
    赤泥陶粒 60.74 0.079 2 5.215
    沸石 23.43 0.065 7 11.21
    下载: 导出CSV

    表  6  基质中主要化学成分及其含量

    Table  6.   Main chemical components and contents in substrates %

    基质 Al Ca Fe Mg Si K Mn Na
    电气石陶粒 7.986 52.976 6.109 4.938 22.196 1.753 0.273 0.674
    赤泥陶粒 17.570 5.901 7.934 0.946 54.664 8.675 0.177 2.127
    下载: 导出CSV
  • [1] VACCARI D A, POWERS S M, LIU X. Demand-driven model for global phosphate rock suggests paths for phosphorus sustainability[J]. Environmental Science & Technology,2019,53(17):10417-10425.
    [2] 黄益平, 王鹏, 徐启渝, 等.袁河流域土地利用方式对河流水体碳、氮、磷的影响[J]. 环境科学研究,2021,34(9):2132-2142.

    HUANG Y P, WANG P, XU Q Y, et al. Influence of land use on carbon, nitrogen and phosphorus in water of Yuan River Basin[J]. Research of Environmental Sciences,2021,34(9):2132-2142.
    [3] WU B L, FANG L P, FORTNER J D, et al. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites[J]. Water Research,2017,126:179-188. doi: 10.1016/j.watres.2017.09.034
    [4] LI Z J, YUE Q Y, GAO B Y, et al. Phosphorus release potential and pollution characteristics of sediment in downstream Nansi Lake, China[J]. Frontiers of Environmental Science & Engineering,2012,6(2):162-170.
    [5] ROTH J J, PASSIG F H, ZANETTI F L, et al. Influence of the flooded time on the performance of a tidal flow constructed wetland treating urban stream water[J]. Science of the Total Environment,2021,758:143652. doi: 10.1016/j.scitotenv.2020.143652
    [6] 张瑞斌, 潘卓兮, 王乐阳, 等.固定化菌藻填料强化人工湿地脱氮除磷效果研究[J]. 环境工程技术学报,2021,11(1):91-96. doi: 10.12153/j.issn.1674-991X.20200128

    ZHANG R B, PAN Z X, WANG L Y, et al. Effect of immobilized bacteria and algae filler on enhanced nitrogen and phosphorus removal in constructed wetland[J]. Journal of Environmental Engineering Technology,2021,11(1):91-96. doi: 10.12153/j.issn.1674-991X.20200128
    [7] MARCHAND L, MENCH M, JACOB D L, et al. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review[J]. Environmental Pollution,2010,158(12):3447-3461. doi: 10.1016/j.envpol.2010.08.018
    [8] 李昀婷, 石玉敏, 王俭.农村生活污水一体化处理技术研究进展[J]. 环境工程技术学报,2021,11(3):499-506. doi: 10.12153/j.issn.1674-991X.20200146

    LI Y T, SHI Y M, WANG J. Research progress on integrated treatment technologies of rural domestic sewage[J]. Journal of Environmental Engineering Technology,2021,11(3):499-506. doi: 10.12153/j.issn.1674-991X.20200146
    [9] 奚道国, 张瑞斌, 周乃, 等.铝污泥复合填料特性及在人工湿地中的应用[J]. 环境工程技术学报,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070

    XI D G, ZHANG R B, ZHOU N, et al. Characteristics of aluminum sludge composite filler and its application in constructed wetlands[J]. Journal of Environmental Engineering Technology,2019,9(5):552-558. doi: 10.12153/j.issn.1674-991X.2019.05.070
    [10] ZHAO J, GAO J Q, LIU J Z. Preparation of a new iron-carbon-loaded constructed wetland substrate and enhanced phosphorus removal performance[J]. Materials,2020,13(21):4739. doi: 10.3390/ma13214739
    [11] SHABNAM N, AHN Y, MAKSACHEV A, et al. Application of red-mud based ceramic media for phosphate uptake from water and evaluation of their effects on growth of Iris latifolia seedling[J]. Science of the Total Environment,2019,688:724-731. doi: 10.1016/j.scitotenv.2019.06.267
    [12] YIN H B, YAN X W, GU X H. Evaluation of thermally-modified calcium-rich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands[J]. Water Research,2017,115:329-338. doi: 10.1016/j.watres.2017.03.014
    [13] PÉREZ S, MUÑOZ-SALDAÑA J, ACELAS N, et al. Phosphate removal from aqueous solutions by heat treatment of eggshell and palm fiber[J]. Journal of Environmental Chemical Engineering,2021,9(1):104684. doi: 10.1016/j.jece.2020.104684
    [14] 牛聪, 陈浩天, 李鑫, 等.基于磷去除效果的人工湿地中含活性氧化铝复合基质配比优化[J]. 农业工程学报,2019,35(17):240-247. doi: 10.11975/j.issn.1002-6819.2019.17.029

    NIU C, CHEN H T, LI X, et al. Proportional optimization of composite substrates with activated alumina in constructed wetlands considering phosphorus removal of sewage[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(17):240-247. doi: 10.11975/j.issn.1002-6819.2019.17.029
    [15] 陈晓, 贾晓梅, 侯文华, 等.人工湿地系统中填充基质对磷的吸附能力[J]. 环境科学研究,2009,22(9):1068-1073.

    CHEN X, JIA X M, HOU W H, et al. Phosphorus adsorption capacity of filter media in constructed wetlands[J]. Research of Environmental Sciences,2009,22(9):1068-1073.
    [16] WU Z B, ZHANG S, CHENG S P, et al. Performance and mechanism of phosphorus removal in an integrated vertical flow constructed wetland treating eutrophic lake water[J]. Fresenius Environmental Bulletin,2007,16(8):934-939.
    [17] ZHANG Y J, DING X J, LI M Q. Preparation, characterization and in vitro stability of iron-chelating peptides from mung beans[J]. Food Chemistry,2021,349:129101. doi: 10.1016/j.foodchem.2021.129101
    [18] GONG H B, TAN Z X, HUANG K, et al. Mechanism of cadmium removal from soil by silicate composite biochar and its recycling[J]. Journal of Hazardous Materials,2021,409:125022. doi: 10.1016/j.jhazmat.2020.125022
    [19] XU S Y, LI J X, YE Q F, et al. Flame-retardant ethylene vinyl acetate composite materials by combining additions of aluminum hydroxide and melamine cyanurate: preparation and characteristic evaluations[J]. Journal of Colloid and Interface Science,2021,589:525-531. doi: 10.1016/j.jcis.2021.01.026
    [20] HAROUIYA N, PROST-BOUCLE S, MORLAY C, et al. Performance evaluation of phosphorus removal by apatite in constructed wetlands treating domestic wastewater: column and pilot experiments[J]. International Journal of Environmental Analytical Chemistry,2011,91(7/8):740-752. ◇
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  236
  • HTML全文浏览量:  153
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28

目录

    /

    返回文章
    返回