留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生态恢复模式对若尔盖高寒沙化草地土壤微生物群落功能多样性的影响

朱粟锋 刘煜杰 张强 江聪 简小枚 税伟

朱粟锋,刘煜杰,张强,等.生态恢复模式对若尔盖高寒沙化草地土壤微生物群落功能多样性的影响[J].环境工程技术学报,2022,12(1):199-206 doi: 10.12153/j.issn.1674-991X.20210138
引用本文: 朱粟锋,刘煜杰,张强,等.生态恢复模式对若尔盖高寒沙化草地土壤微生物群落功能多样性的影响[J].环境工程技术学报,2022,12(1):199-206 doi: 10.12153/j.issn.1674-991X.20210138
ZHU S F,LIU Y J,ZHANG Q,et al.Effects of ecological restoration patterns on soil microbial community functional diversity in Zoige alpine desertification grassland[J].Journal of Environmental Engineering Technology,2022,12(1):199-206 doi: 10.12153/j.issn.1674-991X.20210138
Citation: ZHU S F,LIU Y J,ZHANG Q,et al.Effects of ecological restoration patterns on soil microbial community functional diversity in Zoige alpine desertification grassland[J].Journal of Environmental Engineering Technology,2022,12(1):199-206 doi: 10.12153/j.issn.1674-991X.20210138

生态恢复模式对若尔盖高寒沙化草地土壤微生物群落功能多样性的影响

doi: 10.12153/j.issn.1674-991X.20210138
基金项目: 国家自然科学基金项目(41701601,41871196);福州大学科技发展基金资助项目(510211)
详细信息
    作者简介:

    朱粟锋(1994—),男,助理研究员,硕士,主要从事生态环境保护与修复研究,Zhu.sufeng@craes.org.cn

    通讯作者:

    税伟(1974—),男,教授,博士生导师,主要从事生态地理、土地利用/覆被变化与生态环境效应研究, shuiwei@fzu.edu.cn

  • 中图分类号: X53

Effects of ecological restoration patterns on soil microbial community functional diversity in Zoige alpine desertification grassland

  • 摘要: 若尔盖高原生态战略地位突出,在维持地区生物多样性、生态系统稳定等方面起到重要作用。研究不同生态恢复模式下土壤微生物群落功能多样性,有助于为在高寒草地以及全国其他类似地区实施退牧还草、退耕还林还草等生态环境重建工作提供科学依据。以若尔盖草地不同恢复模式下的土壤微生物群落为研究对象,采用Biolog微平板法对比研究了生态治理措施对沙化草地生态系统及其土壤微生物功能多样性的影响。结果表明:人工生态恢复模式提高了沙化草地土壤微生物的活性,其中灌草间作模式下的恢复样地与自然恢复样地在稳定时二者的平均颜色变化率差值达到0.761;灌草间作模式下草地土壤微生物群落的Shannon指数、Simpson指数及McIntosh指数分别为3.290、0.960和10.408,均比草地建植模式下高,该模式能为土壤微生物群落提供更多的生态位;灌草间作恢复模式下草地土壤微生物群落利用各类碳源能力较其他恢复模式高,碳水化合物和氨基酸类是若尔盖草地土壤微生物群落利用最多的碳源;采用灌草间作模式的人工治理方式,同时结合增加草地土壤中碳水化合物、氨基酸类等碳源含量的生物措施,可以高效地治理若尔盖高寒沙化草地。

     

  • 图  1  若尔盖县区位

    Figure  1.  Location of Zoige County

    图  2  不同生态恢复模式的治理样地

    Figure  2.  Test samples of different ecological restoration patterns

    图  3  土壤微生物群落平均颜色变化率

    Figure  3.  Average well color development (AWCD) of soil microbial community

    图  4  土壤微生物群落对不同碳源的利用能力

    Figure  4.  Utilization capacity of soil microbial community to different carbon sources

    图  5  土壤微生物群落主成分分析

    A2—β-甲基-D-葡萄糖苷;A3—D-半乳糖酸-γ-内脂;A4—L-精氨酸;B1—丙酮酸甲酯;B2—D-木糖;B3—D-半乳糖醛酸;B4—L-天门冬酰胺;C1—吐温40;C2—i-赤藓糖醇;C3—2-羟基苯甲酸;C4—L-苯基丙氨酸;D1—吐温80;D2—D-甘露醇;D3—4-羟基苯甲酸;D4—L-丝氨酸;E1—α-环式糊精;E2—N-乙酰-D-葡萄糖胺;E3—γ-羟基丁酸;E4—L-苏氨酸;F1—肝糖;F2—D-葡萄糖胺酸;F3—衣康酸;F4—甘氨酰-L-谷氨酸;G1—D-纤维二糖;G2—α-D-葡萄糖-1-磷酸;G3—α-丁酮酸;G4—苯乙胺;H1—α-D-乳糖;H2—D,L-α-磷酸甘油;H3—D-苹果酸;H4—腐胺。

    Figure  5.  Principal component analysis of soil microbial community

    表  1  样地基本信息及群落组成

    Table  1.   Basic information and community composition of plots

    生态恢复模式 东经 北纬 海拔/m 恢复年限/a 覆盖度/%
    灌草间作模式 10233'32.87'' 3355'28.16'' 3 425.2 10 80
    灌草间作模式对照 10233'55.37'' 3355'21.76'' 3 420.0 3
    草地建植模式 10233'45'' 3351'24.78'' 3 552.8 10 90
    草地建植模式对照 10233'44.24'' 3351'24.44'' 3 547.1 5
    下载: 导出CSV

    表  2  不同生态恢复模式下草地微生物群落功能多样性

    Table  2.   Function diversity index of grassland microbial community of different ecological restoration patterns

    生态恢复模式 Shannon指数
    Simpson指数 McIntosh指数
    灌草间作模式 3.290±0.005a 0.960±0.000a 10.408±0.185a
    草地建植模式 3.139±0.003b 0.953±0.001a 7.902±0.290b
    灌草间作模式对照 2.884±0.077c 0.935±0.005b 6.848±0.163c
    草地建植模式对照 2.848±0.080c 0.935±0.006b 7.909±0.709b
      注:数据以(平均值±标准差)表示;不同字母表示不同模式间差异显著(P<0.05),相同字母表示差异不显著(P>0.05)。
    下载: 导出CSV
  • [1] GONG P, WANG J, YU L, et al. Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data[J]. International Journal of Remote Sensing,2013,34(7):2607-2654. doi: 10.1080/01431161.2012.748992
    [2] 朱耀军, 马牧源, 赵娜娜.若尔盖高寒泥炭地修复技术进展与展望[J]. 生态学杂志,2020,39(12):4185-4192.

    ZHU Y J, MA M Y, ZHAO N N. Progress and prospect of restoration technology of degraded alpine peatlands in Zoige Plateau[J]. Chinese Journal of Ecology,2020,39(12):4185-4192.
    [3] ZHANG Z C, LIU M, SUN J, et al. Degradation leads to dramatic decrease in topsoil but not subsoil root biomass in an alpine meadow on the Tibetan Plateau, China[J]. Journal of Arid Land,2020,12(5):806-818. doi: 10.1007/s40333-020-0074-x
    [4] 张顺谦, 郭海燕, 罗勇.气候变化和载畜量对若尔盖草地沙化的驱动力评价[J]. 中国草地学报,2007,29(5):64-71. doi: 10.3969/j.issn.1673-5021.2007.05.011

    ZHANG S Q, GUO H Y, LUO Y. Assessment on driving force of climate change & livestock grazing capacity to grassland sanding in Ruoergai[J]. Chinese Journal of Grassland,2007,29(5):64-71. doi: 10.3969/j.issn.1673-5021.2007.05.011
    [5] 伍业钢, 严晋跃, 张立, 等.若尔盖草原沙漠化问题探讨及治理建议[J]. 科技导报,2012,30(14):11.
    [6] 江聪, 简小枚, 杜勇, 等.若尔盖高寒草地微地形的土壤微生物群落多样性特征[J]. 福州大学学报(自然科学版),2018,46(6):831-838.

    JIANG C, JIAN X M, DU Y, et al. Characteristics of soil microbial community diversity in Zoige alpine grassland microtopography[J]. Journal of Fuzhou University (Natural Science Edition),2018,46(6):831-838.
    [7] 蒲玉琳, 叶春, 张世熔, 等.若尔盖沙化草地不同生态恢复模式土壤活性有机碳及碳库管理指数变化[J]. 生态学报,2017,37(2):367-377.

    PU Y L, YE C, ZHANG S R, et al. Effects of different ecological restoration patterns on labile organic carbon and carbon pool management index of desertification grassland soil in Zoige[J]. Acta Ecologica Sinica,2017,37(2):367-377.
    [8] 尚洪磊, 韩永伟, 蔡譞, 等.高寒内流河源头区山水林田湖草生态保护与修复实践: 以青海省祁连山疏勒河—哈拉湖汇水区为例[J]. 环境工程技术学报,2021,11(2):234-240. doi: 10.12153/j.issn.1674-991X.20200052

    SHANG H L, HAN Y W, CAI X, et al. Practice of mountain-river-forest-farmland-lake-grassland ecological conservation and restoration of the source area of alpine inland rivers: a case study in intersection area of Shule River and Hala Lake in Qilian Mountains of Qinghai Province[J]. Journal of Environmental Engineering Technology,2021,11(2):234-240. doi: 10.12153/j.issn.1674-991X.20200052
    [9] 税伟, 白剑平, 简小枚.若尔盖高原沙化草地治理区固碳能力研究[J]. 自然灾害学报,2016,25(6):42-50.

    SHUI W, BAI J P, JIAN X M. Carbon fixation ability of desertified grassland ecosystem in Zoige Plateau[J]. Journal of Natural Disasters,2016,25(6):42-50.
    [10] 顾城天, 罗彬, 王恒, 等.若尔盖高原湿地水质演变特征及氮磷累积效应[J]. 水土保持研究,2020,27(4):47-53.

    GU C T, LUO B, WANG H, et al. Water quality evolution and effect of nitrogen and phosphorus accumulation in wetland of Ruoergai Plateau[J]. Research of Soil and Water Conservation,2020,27(4):47-53.
    [11] 张晓丽, 孔凡磊, 刘晓林, 等.生物质改良剂对川西北地区高寒草地沙化土壤有机碳特征的影响[J]. 中国生态农业学报,2019,27(11):1732-1743.

    ZHANG X L, KONG F L, LIU X L, et al. Effects of different biomass amendments on soil organic carbon characteristics in alpine desertification grassland of Northwest Sichuan[J]. Chinese Journal of Eco-Agriculture,2019,27(11):1732-1743.
    [12] 刘学敏, 罗久富, 陈德朝, 等.若尔盖高原不同退化程度草地植物种群生态位特征[J]. 浙江农林大学学报,2019,36(2):289-297. doi: 10.11833/j.issn.2095-0756.2019.02.010

    LIU X M, LUO J F, CHEN D C, et al. Floristic assembly and dominant population niches in degraded grasslands on the Zoige Plateau[J]. Journal of Zhejiang A&F University,2019,36(2):289-297. doi: 10.11833/j.issn.2095-0756.2019.02.010
    [13] 李慧, 李雪梦, 姚庆智, 等.基于Biolog-ECO方法的两种不同草原中5种不同植物根际土壤微生物群落特征[J]. 微生物学通报,2020,47(9):2947-2958.

    LI H, LI X M, YAO Q Z, et al. Biolog-ECO analysis of rhizosphere soil microbial community characteristics of five different plants in two different grasslands[J]. Microbiology China,2020,47(9):2947-2958.
    [14] 顾静, 李金建, 张玉, 等.利用树木年轮重建若尔盖墨曲过去257年径流变化[J]. 干旱区资源与环境,2021,35(3):66-72.

    GU J, LI J J, ZHANG Y, et al. Runoff variations of the Moqu River over the past 257 years based on tree-ring data[J]. Journal of Arid Land Resources and Environment,2021,35(3):66-72.
    [15] XIANG S, GUO R, WU N, et al. Current status and future prospects of Zoige Marsh in eastern Qinghai-Tibet Plateau[J]. Ecological Engineering,2009,35(4):553-562. doi: 10.1016/j.ecoleng.2008.02.016
    [16] CHAERUN S K, PANGESTI N P D, TOYOTA K, et al. Changes in microbial functional diversity and activity in paddy soils irrigated with industrial wastewaters in Bandung, West Java Province, Indonesia[J]. Water, Air & Soil Pollution,2011,217(1/2/3/4):491-502.
    [17] CLASSEN A T, BOYLE S I, HASKINS K E, et al. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiology Ecology,2003,44(3):319-328. doi: 10.1016/S0168-6496(03)00068-0
    [18] 赵燕兰, 周青平, 曾鹂, 等.沙化草地植被恢复治理技术研究综述[J]. 草原与草业,2017,29(3):7-11. doi: 10.3969/j.issn.2095-5952.2017.03.004

    ZHAO Y L, ZHOU Q P, ZENG L, et al. A review of vegetation restoration and treatment technology for sandy grassland[J]. Grassland and Prataculture,2017,29(3):7-11. doi: 10.3969/j.issn.2095-5952.2017.03.004
    [19] 张利, 李杨红, 范宇, 等.生态毯覆盖对若尔盖沙化草地土壤环境及植被恢复的影响[J]. 林业与环境科学,2017,33(1):24-28. doi: 10.3969/j.issn.1006-4427.2017.01.004

    ZHANG L, LI Y H, FAN Y, et al. Effects of eco-blanket covering on soil environment and vegetation restoration of the desertification grassland in Zoige[J]. Forestry and Environmental Science,2017,33(1):24-28. doi: 10.3969/j.issn.1006-4427.2017.01.004
    [20] 田美荣, 刘志强, 高吉喜, 等.基于种子库激活的沙化草地生态修复技术应用[J]. 生态与农村环境学报,2017,33(1):32-37. doi: 10.11934/j.issn.1673-4831.2017.01.005

    TIAN M R, LIU Z Q, GAO J X, et al. Application of the seed-bank-reactivation-based ecological remediation technologies to sandy grassland[J]. Journal of Ecology and Rural Environment,2017,33(1):32-37. doi: 10.11934/j.issn.1673-4831.2017.01.005
    [21] LIN Y, HONG M, HAN G D, et al. Grazing intensity affected spatial patterns of vegetation and soil fertility in a desert steppe[J]. Agriculture, Ecosystems & Environment,2010,138(3/4):282-292.
    [22] 朱粟锋, 江聪, 税伟, 等.退化天坑倒石堆阴坡植物群落垂直分布特征: 以云南沾益深陷塘为例[J]. 应用生态学报,2020,31(5):1496-1504.

    ZHU S F, JIANG C, SHUI W, et al. Vertical distribution characteristics of plant community in shady slope of degraded tiankeng talus: a case study of Zhanyi Shenxiantang in Yunnan, China[J]. Chinese Journal of Applied Ecology,2020,31(5):1496-1504.
    [23] 张文娟, 薛娴, 彭飞, 等.人工干预对黄河源区沙化草地土壤微生物群落的影响[J]. 草业科学,2019,36(4):970-979.

    ZHANG W J, XUE X, PENG F, et al. Effect of human intervention on soil microbial community in desertification grassland of the Yellow River Source Region[J]. Pratacultural Science,2019,36(4):970-979.
    [24] LIU Z F, FU B J, ZHENG X X, et al. Plant biomass, soil water content and soil N:P ratio regulating soil microbial functional diversity in a temperate steppe: a regional scale study[J]. Soil Biology and Biochemistry,2010,42(3):445-450. doi: 10.1016/j.soilbio.2009.11.027
    [25] 周桔, 雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J]. 生物多样性,2007,15(3):306-311. doi: 10.3321/j.issn:1005-0094.2007.03.012

    ZHOU J, LEI T. Review and prospects on methodology and affecting factors of soil microbial diversity[J]. Biodiversity Science,2007,15(3):306-311. doi: 10.3321/j.issn:1005-0094.2007.03.012
    [26] 叶斌, 黄兰英, 李春华, 等.太湖竺山湾缓冲带草林系统生长状态及土壤性质分析[J]. 环境工程技术学报,2015,5(5):411-417. doi: 10.3969/j.issn.1674-991X.2015.05.065

    YE B, HUANG L Y, LI C H, et al. Investigation on growth situation and soil property of grass-forest system in lake buffer zone of Zhushan Bay, Lake Taihu[J]. Journal of Environmental Engineering Technology,2015,5(5):411-417. doi: 10.3969/j.issn.1674-991X.2015.05.065
    [27] 罗亚勇, 张宇, 张静辉, 等.不同退化阶段高寒草甸土壤化学计量特征[J]. 生态学杂志,2012,31(2):254-260.

    LUO Y Y, ZHANG Y, ZHANG J H, et al. Soil stoichiometry characteristics of alpine meadow at its different degradation stages[J]. Chinese Journal of Ecology,2012,31(2):254-260. ⊗
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  243
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20

目录

    /

    返回文章
    返回