留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

焦化厂PAHs污染土壤中微生物群落多样性特征

王荔 张腾飞 杨苏才 刘志号 苟雅玲 赵倩云 孙仲平 乔鹏炜

王荔, 张腾飞, 杨苏才, 刘志号, 苟雅玲, 赵倩云, 孙仲平, 乔鹏炜. 焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报, 2021, 11(4): 720-726. doi: 10.12153/j.issn.1674-991X.20200251
引用本文: 王荔, 张腾飞, 杨苏才, 刘志号, 苟雅玲, 赵倩云, 孙仲平, 乔鹏炜. 焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报, 2021, 11(4): 720-726. doi: 10.12153/j.issn.1674-991X.20200251
WANG Li, ZHANG Tengfei, YANG Sucai, LIU Zhihao, GOU Yaling, ZHAO Qianyun, SUN Zhongping, QIAO Pengwei. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 720-726. doi: 10.12153/j.issn.1674-991X.20200251
Citation: WANG Li, ZHANG Tengfei, YANG Sucai, LIU Zhihao, GOU Yaling, ZHAO Qianyun, SUN Zhongping, QIAO Pengwei. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology, 2021, 11(4): 720-726. doi: 10.12153/j.issn.1674-991X.20200251

焦化厂PAHs污染土壤中微生物群落多样性特征

doi: 10.12153/j.issn.1674-991X.20200251
详细信息
    作者简介:

    王荔(1995—),女,硕士研究生,主要从事场地调查评估与修复技术研发, 17600438279@163.com

    通讯作者:

    杨苏才 E-mail: liepi_yangsc@163.com

  • 中图分类号: X53

Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant

More Information
    Corresponding author: YANG Sucai E-mail: liepi_yangsc@163.com
  • 摘要: 土壤中微生物在多环芳烃(PAHs)的降解过程中起着重要作用。以华北某焦化厂土壤为研究对象,在5个采样点(每个点分6层)采集30个土壤样品,分析土壤环境因子(理化性质和PAHs浓度)、微生物丰度及群落结构,探讨土壤中微生物组成与环境因子间的关系。结果表明:土壤中细菌丰度为5.33~8.89,与土壤深度呈显著负相关(P<0.01),与土壤PAHs、有机碳、全氮浓度呈正相关(P<0.05);土壤中优势细菌类群(门)为变形菌门(Proteobacteria),其相对丰度占比最高达90%,其次是绿弯菌门(Chloroflexi)、放线菌门(Actinobacteria)、厚壁菌门(Firmicutes)和酸杆菌门(Acidobacteria),其占门水平分类细菌数量的64%~97%;细菌类群与环境因子冗余分析表明,焦化厂土壤中细菌群落结构特征是PAHs污染和环境因子共同作用的结果,其中土壤pH与速效钾、PAHs、全氮浓度对土壤细菌群落组成影响明显,PAHs潜在降解菌Proteobacteria丰度与PAHs、全氮、有效磷、速效钾、有机碳浓度呈正相关。

     

  • [1] 麻俊胜, 苟雅玲, 王兴润, 等. 化学氧化后深层土壤中多环芳烃的缺氧微生物降解[J]. 环境工程技术学报, 2020, 10(1):97-104.

    MA J S, GOU Y L, WANG X R, et al. Anoxic biodegradation ofpolycyclic aromatic hydrocarbons(PAHs)in aged deep soil pretreated with chemical oxidation[J]. Journal of Environmental Engineering Technology, 2020, 10(1):97-104.
    [2] 王硕, 魏文侠, 李佳斌, 等. 某钢铁厂土壤中多环芳烃污染评价与风险评估[J]. 环境工程技术学报, 2019, 9(4):447-452.

    WANG S, WEI W X, LI J B, et al. Evaluation and risk assessment of polycyclic aromatic hydrocarbons in soil of a steel plant[J]. Journal of Environmental Engineering Technology, 2019, 9(4):447-452.
    [3] KUPPUSAMY S, THAVAMANI P, VENKATESWARLU K, et al. Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:technological constraints,emerging trends and future directions[J]. Chemosphere, 2017, 168:944-968.
    doi: 10.1016/j.chemosphere.2016.10.115
    [4] CAO W, YIN L Q, ZHANG D, et al. Contamination,sources,and health risks associated with soil PAHs in rebuilt land from a coking plant,Beijing,China[J]. International Journal of Environmental Research and Public Health, 2019, 16(4):670.
    doi: 10.3390/ijerph16040670
    [5] TSAI J C, KUMAR M, LIN J G. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway[J]. Journal of Hazardous Materials, 2009, 164(2/3):847-855.
    doi: 10.1016/j.jhazmat.2008.08.101
    [6] 雷忠春, 陈丽华, 孙万虹, 等. 甲基丙烯酸树脂吸附微生物降解与演化石油烃特性[J]. 环境科学研究, 2019, 32(1):142-149.

    LEI Z C, CHEN L H, SUN W H, et al. Biological degradation and transformation characteristics of total petroleum hydrocarbon by oil-degradation bacteria adsorbed on the resinmade by methylacrylic acid butyi ester[J]. Research of Environmental Sciences, 2019, 32(1):142-149.
    [7] SUTTON N B, MAPHOSA F, MORILLO J A, et al. Impact of long-term diesel contamination on soil microbial community structure[J]. Applied and Environmental Microbiology, 2013, 79(2):619-630.
    doi: 10.1128/AEM.02747-12
    [8] SILVA-CASTRO G A, RODELAS B, PERUCHA C, et al. Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents:assays in a pilot plant[J]. Science of the Total Environment, 2013, 445/446:347-355.
    doi: 10.1016/j.scitotenv.2012.12.081
    [9] JIAO S, LIU Z S, LIN Y B, et al. Bacterial communities in oil contaminated soils:biogeography and co-occurrence patterns[J]. Soil Biology and Biochemistry, 2016, 98:64-73.
    doi: 10.1016/j.soilbio.2016.04.005
    [10] YAN Z S, HAO Z, WU H F, et al. Co-occurrence patterns of the microbial community in polycyclic aromatic hydrocarbon-contaminated riverine sediments[J]. Journal of Hazardous Materials, 2019, 367:99-108.
    doi: 10.1016/j.jhazmat.2018.12.071
    [11] ZHU Q H, WU Y C, ZENG J, et al. Influence of bacterial community composition and soil factors on the fate of phenanthrene and benzo[a]pyrene in three contrasting farmland soils[J]. Environmental Pollution, 2019, 247:229-237.
    doi: 10.1016/j.envpol.2018.12.079
    [12] 代小丽, 王硕, 李佳斌, 等. 石油污染土壤原位生物修复强化技术研究进展[J]. 环境工程技术学报, 2020, 10(3):456-466.

    DAI X L, WANG S, LI J B, et al. Research progress on in situ bioremediation enhancement technology of oil contaminated soil[J]. Journal of Environmental Engineering Technology, 2020, 10(3):456-466.
    [13] 陈箐, 程昉, 宋晓峰, 等. 辽河油田油泥微生物多样性分析及功能菌种筛选评价[J]. 东北石油大学学报, 2017, 41(6):105-112.

    CHEN Q, CHENG F, SONG X F, et al. Analysis of microbial diversity and functional strain screening evaluation from Liaohe oilfield sludge[J]. Journal of Northeast Petroleum University, 2017, 41(6):105-112.
    [14] PENG M, ZI X X, WANG Q Y. Bacterial community diversity of oil-contaminated soils assessed by high throughput sequencing of 16S rRNA genes[J]. International Journal of Environmental Research and Public Health, 2015, 12(10):12002-12015.
    doi: 10.3390/ijerph121012002
    [15] YANG S C, GOU Y L, SONG Y, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in a highly contaminated aged soil using nitrate and soil microbes[J]. Environmental Earth Sciences, 2018, 77(12):1-11.
    doi: 10.1007/s12665-017-7169-5
    [16] 鲁如坤. 土壤农化分析[M]. 北京: 中国农业科学技术出版社, 1995.
    [17] GOU Y L, YANG S C, CHENG Y J, et al. Enhanced anoxic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in aged soil pretreated by hydrogen peroxide[J]. Chemical Engineering Journal, 2019, 356:524-533.
    doi: 10.1016/j.cej.2018.09.059
    [18] 郭瑾, 葛蔚, 柴超, 等. 化学工业区周边土壤中多环芳烃含量、来源及健康风险评估[J]. 环境化学, 2018, 37(2):296-309.

    GUO J, GE W, CHAI C, et al. Concentrations,sources,and health risk of polycyclic aromatic hydrocarbons in soils around chemical plants[J]. Environmental Chemistry, 2018, 37(2):296-309.
    [19] GARCIA-PAUSAS J, PATERSON E. Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon[J]. Soil Biology and Biochemistry, 2011, 43(8):1705-1713.
    doi: 10.1016/j.soilbio.2011.04.016
    [20] 程东祥, 张玉川, 马小凡, 等. 长春市土壤重金属化学形态与土壤微生物群落结构的关系[J]. 生态环境学报, 2009, 18(4):1279-1285.

    CHENG D X, ZHANG Y C, MA X F, et al. Relationship between chemical forms of some heavy metals and the microbial community structure in soil in Changchun urban[J]. Ecology and Environmental Sciences, 2009, 18(4):1279-1285.
    [21] EKELUND F, RØNN R,CHRISTENSEN S.Distribution with depth of protozoa,bacteria and fungi in soil profiles from three Danish forest sites[J]. Soil Biology and Biochemistry, 2001, 33(4/5):475-481.
    doi: 10.1016/S0038-0717(00)00188-7
    [22] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology and Biochemistry, 2002, 34(3):387-401.
    doi: 10.1016/S0038-0717(01)00199-7
    [23] 董莉丽, 郑粉莉. 陕北黄土丘陵沟壑区土壤粒径分布分形特征[J]. 土壤, 2010, 42(2):302-308.

    DONG L L, ZHENG F L. Fractal characteristics of soil particle size distributions in gully-hilly regions of the loess plateau,north of Shaanxi,China[J]. Soils, 2010, 42(2):302-308.
    [24] 苟雅玲, 王东, 杨苏才, 等. 典型加油站土壤中微生物丰度及群落多样性[J]. 环境科学与技术, 2016, 39(6):1-6.

    GOU Y L, WANG D, YANG S C, et al. Microbial abundance and community structure in soil at a typical gas station site[J]. Environmental Science & Technology, 2016, 39(6):1-6.
    [25] FIERER N, SCHIMEL J P, HOLDEN P A. Variations in microbial community composition through two soil depth profiles[J]. Soil Biology and Biochemistry, 2003, 35(1):167-176.
    doi: 10.1016/S0038-0717(02)00251-1
    [26] 图影. 高浓度多环芳烃污染土壤的生物柴油及微生物修复[D]. 阜新:辽宁工程技术大学, 2009.
    [27] 徐苗, 段魏魏, 赵亚光, 等. 石油污染土壤理化性质对微生物代谢特征的影响[J]. 环境工程, 2018, 36(2):178-183.

    XU M, DUAN W W, ZHAO Y G, et al. Impact on microbial metabolic characteristics by physical and chemical properties of oil contaminated soil[J]. Environmental Engineering, 2018, 36(2):178-183.
    [28] 姚炎红, 王明霞, 左小虎, 等. 典型油田多环芳烃污染对土壤反硝化微生物群落结构的影响[J]. 环境科学, 2016, 37(12):4750-4759.

    YAO Y H, WANG M X, ZUO X H, et al. Effects of PAHs pollution on the community structure of denitrifiers in a typical oilfield[J]. Environmental Science, 2016, 37(12):4750-4759.
    [29] 甄丽莎, 谷洁, 胡婷, 等. 黄土高原石油污染土壤微生物群落结构及其代谢特征[J]. 生态学报, 2015, 35(17):5703-5710.

    ZHEN L S, GU J, HU T, et al. Microbial community structure and metabolic characteristics of oil-contaminated soil in the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(17):5703-5710.
    [30] 李文旭, 何剑汶, 刘璟, 等. 黄水溪砷环境地球化学迁移行为及其细菌群落分析[J]. 环境科学研究, 2019, 32(6):966-973.

    LI W X, HE J W, LIU J, et al. Environmental geochemistry and transportation behavior of arsenic and bacterial community analysis in Huangshui Creek[J]. Research of Environmental Sciences, 2019, 32(6):966-973.
    [31] ROGERS S W, ONG S K, MOORMAN T B. Mineralization of PAHs in coal-tar impacted aquifer sediments and associated microbial community structure investigated with FISH[J]. Chemosphere, 2007, 69(10):1563-1573.
    doi: 10.1016/j.chemosphere.2007.05.058
    [32] ZHANG D C, MÖRTELMAIER C, MARGESIN R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil[J]. Science of the Total Environment, 2012, 421/422:184-196.
    doi: 10.1016/j.scitotenv.2012.01.043
    [33] GHOSAL D, GHOSH S, DUTTA T K, et al. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs):a review[J]. Frontiers in Microbiology, 2016, 7:1369.
    [34] BELL T H, YERGEAU E, MARTINEAU C, et al. Identification of nitrogen-incorporating bacteria in petroleum-contaminated arctic soils by using [15N]DNA-based stable isotope probing and pyrosequencing[J]. Applied and Environmental Microbiology, 2011, 77(12):4163-4171.
    doi: 10.1128/AEM.00172-11
    [35] GOU Y L, ZHAO Q Y, YANG S C, et al. Removal of polycyclic aromatic hydrocarbons (PAHs) and the response of indigenous bacteria in highly contaminated aged soil after persulfate oxidation[J]. Ecotoxicology and Environmental Safety, 2020, 190:110092.
    doi: 10.1016/j.ecoenv.2019.110092
    [36] 刘款, 孙明明, 刘满强, 等. 土壤反硝化对磺胺嘧啶及抗性基因消减的影响[J]. 土壤, 2017, 49(3):482-491.

    LIU K, SUN M M, LIU M Q, et al. Effects of anaerobic denitrification on the dissipation of sulfadiazine and resistance genes in soil[J]. Soils, 2017, 49(3):482-491.
    [37] 姜睿玲, 杨统一, 陈芳艳, 等. 桑园土壤微生物群落功能多样性对PAHs污染的响应[J]. 生态与农村环境学报, 2012, 28(4):439-444.

    JIANG R L, YANG T Y, CHEN F Y, et al. Response of soil microbial community in mulberry garden to PAHs pollution in functional diversity[J]. Journal of Ecology and Rural Environment, 2012, 28(4):439-444.
    [38] CHEEMA S, LAVANIA M, LAL B. Impact of petroleum hydrocarbon contamination on the indigenous soil microbial community[J]. Annals of Microbiology, 2015, 65(1):359-369.
    doi: 10.1007/s13213-014-0868-1
    [39] GELSOMINO A, AZZELLINO A. Multivariate analysis of soils:microbial biomass,metabolic activity,and bacterial-community structure and their relationships with soil depth and type[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(3):381-394.
    doi: 10.1002/jpln.v174.3
    [40] 吴盼云, 晁群芳, 赵亚光, 等. 克拉玛依石油污染土壤微生物群落结构及其代谢特征[J]. 基因组学与应用生物学, 2019, 38(5):2062-2069.

    WU P Y, CHAO Q F, ZHAO Y G, et al. Microbial community structure and metabolic characteristics of oil-contaminated soil in Karamay[J]. Genomics and Applied Biology, 2019, 38(5):2062-2069.
    [41] 李海云, 姚拓, 高亚敏, 等. 退化高寒草地土壤真菌群落与土壤环境因子间相互关系[J]. 微生物学报, 2019, 59(4):678-688.

    LI H Y, YAO T, GAO Y M, et al. Relationship between soil fungal community and soil environmental factors in degraded alpine grassland[J]. Acta Microbiologica Sinica, 2019, 59(4):678-688.
    [42] WU Y C, ZENG J, ZHU Q H, et al. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution[J]. Scientific Reports, 2017, 7:40093.
    doi: 10.1038/srep40093
    [43] ZHAO X H, FAN F Q, ZHOU H D, et al. Microbial diversity and activity of an aged soil contaminated by polycyclic aromatic hydrocarbons[J]. Bioprocess and Biosystems Engineering, 2018, 41(6):871-883.
    doi: 10.1007/s00449-018-1921-4
    [44] GENG S Y, CAO W, YUAN J, et al. Microbial diversity and co-occurrence patterns in deep soils contaminated by polycyclic aromatic hydrocarbons (PAHs)[J]. Ecotoxicology and Environmental Safety, 2020, 203:110931.
    doi: 10.1016/j.ecoenv.2020.110931
    [45] HABE H, OMORI T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria[J]. Bioscience,Biotechnology,and Biochemistry, 2003, 67(2):225-243.
    doi: 10.1271/bbb.67.225
    [46] ZHANG S Y, WANG Q F, XIE S G. Bacterial and archaeal community structures in phenanthrene amended aquifer sediment microcosms under oxic and anoxic conditions[J]. International Journal of Environmental Research, 2012, 6(4):1077-1088.
  • 加载中
计量
  • 文章访问数:  399
  • HTML全文浏览量:  150
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-26
  • 刊出日期:  2021-07-20

目录

    /

    返回文章
    返回