Volume 7 Issue 5
Sep.  2017
Turn off MathJax
Article Contents
MA Xiuyuan, HUI Runtang, YANG Aiyong. Effects of wet plume elimination technology on pollutants diffusion[J]. Journal of Environmental Engineering Technology, 2017, 7(5): 533-538. doi: 10.3969/j.issn.1674-991X.2017.05.073
Citation: MA Xiuyuan, HUI Runtang, YANG Aiyong. Effects of wet plume elimination technology on pollutants diffusion[J]. Journal of Environmental Engineering Technology, 2017, 7(5): 533-538. doi: 10.3969/j.issn.1674-991X.2017.05.073

Effects of wet plume elimination technology on pollutants diffusion

doi: 10.3969/j.issn.1674-991X.2017.05.073
  • Received Date: 2017-02-23
  • Publish Date: 2017-09-20
  • Wet plume forms when the wet flue gas from the wet desulphurization system exits into the ambient air, which would bring about visual pollution. The formation and dispersion process of wet plume was analyzed. The effects of wet plume elimination technologies, such as direct heating, cooling and reheating, direct cooling, on the diffusion characteristics of particulate, SO2 and NO2 were investigated. The results showed that the wet plume elimination technologies have little effect on ambient particulate concentration; the ratio of maximum ground-level particulate concentration to ambient particulate standard is less than 1.5%, which indicates that the maximum ground-level particulate concentration is much lower than that of Ambient Air Quality Standard(GB 3095-2012). The direct heating as well as cooling and reheating of flue gas can promote the diffusion of SO2 and NO2, and the ratios of maximum ground-level concentration of SO2 and NO2 to ambient standard values can be reduced by 31.5% and 15.1%, respectively by the two technologies. By direct cooling of flue gas, the ratios of maximum ground-level concentration of SO2 and NO2 to ambient standard values are less than 20% and 70%, respectively, which shows that the maximum ground-level concentrations of SO2 and NO2 are below the air quality standards.

     

  • loading
  • [1]
    沈利, 朱云水, 赵宁宁 . 1 000 MW 燃煤机组湿烟囱防腐方案[J]. 电力建设, 2013,34(12):82-85.

    SHEN L, ZHU Y S, ZHAO N N . Anti-corrosion schemes for wet chimney for 1 000 MW coal-fired units[J]. Electric Power Construction, 2013,34(12):82-85.
    [2]
    吴永杰, 戴永阳, 董凌宏 , 等. 华能杨柳青电厂2×300 MW机组湿烟囱烟囱雨治理研究[J]. 能源环境保护, 2014,28(5):16-19.

    WU Y J, DAI Y Y, DONG L H , et al. The research of managing wet stack rain in the Huaneng Yangliuqing Power Plant 2×300 MW unit[J]. Energy Environmental Protection, 2014,28(5):16-19.
    [3]
    欧阳丽华, 庄烨, 刘科伟 , 等. 燃煤电厂湿烟囱降雨成因分析[J]. 环境科学, 2015,36(6):1975-1982.

    OUYANG L H, ZHUANG Y, LIU K W , et al. Analysis on mechanism of rainout carried by wet stack of thermal power plant[J]. Environmental Science, 2015,36(6):1975-1982.
    [4]
    周洪光 . 如何正确认识火电厂湿烟气排放及白雾现象[J]. 环境工程, 2015,33(增刊):433-437.

    ZHOU H G . A correct understanding of the wet flue gas emission and white spray phenomenon in coal-fired power plants[J]. Environmental Engineering, 2015,33(Suppl):433-437.
    [5]
    周晶, 刘道清, 汪庆丰 . 烧结烟气脱硫系统湿烟气排放的环境问题探讨[J]. 宝钢技术, 2012(5):37-44.

    ZHOU J, LIU D Q, WANG Q F . Discussion on wet flue gas emission of sintering FGD[J]. Bao-Steel Technology, 2012(5):37-44.
    [6]
    裘立春 . 大型燃煤电站锅炉冒白烟的研究[J]. 锅炉技术, 2015,46(3):26-29.

    QIU L C . The research on stack white fume in large utility boiler burning coal[J]. Boiler Technology, 2015,46(3):26-29.
    [7]
    赵文升, 刘英 . 国华台山电厂烟囱消除白雾的研究与应用[J]. 军民两用技术与产品, 2015(4):177-180.

    ZHAO W S, LIU Y . Research and application of eliminating white mist in chimney of Guohua Taishan Power Plant[J]. Dual Use Technologies & Products, 2015(4):177-180.
    [8]
    谭玲君, 赵晓峰, 梁增英 , 等. 垃圾焚烧发电厂白烟成因及其分析[J]. 环境科学与技术, 2014,37(增刊2):483-485.

    TAN L J, ZHAO X F, LIANG Z Y , et al. Analysis of the white smoke problem in waste incineration power plant[J]. Environmental Science & Technology, 2014,37(Suppl 2):483-485.
    [9]
    聂玉强, 邝小磊, 宋春华 . 陶瓷厂喷雾干燥塔白烟形成的机理及解决措施[J]. 环境工程, 2006,24(4):71-75.

    NIE Y Q, KUANG X L, SONG C H . The formation mechanism of white-smoke in spray drying tower of ceramicfactory and solving measures[J]. Environmental Engineering, 2006,24(4):71-75.
    [10]
    朱文杰 . 湿式冷却塔白烟现象分析与解决方案[J]. 制冷空调与电力机械, 2010,31(4):20-23.

    ZHU W J . Analysis and solutions of "white smoke" phenomenon of the wet cooling tower[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2010,31(4):20-23.
    [11]
    肖敬斌 . 大气污染物扩散稀释的计算机模拟研究[D]. 北京:北京化工大学, 2004: 16-22.

    XIAO J B . The research of computer modeling on atmospheric contamination diffusing[D]. Beijing:Beijing University of Chemical Technology, 2004: 16-22.
    [12]
    陈静锋, 柴瑞瑞, 闫浩 , 等. 基于高斯烟羽模型的PM2.5污染源扩散规律模拟分析[J]. 系统工程, 2015,33(9):153-158.

    CHEN J F, CHAI R R, YAN H , et al. PM2.5 pollution source diffusion law and simulation analysis based on the gauss plume model[J]. Systems Engineering, 2015,33(9):153-158.
    [13]
    王东歌, 朱法华, 惠润堂 , 等. 相变凝聚器对 WESP 提效研究及工程应用[J]. 中国电机工程学报, 2016,36(16):4349-4355.

    WANG D G, ZHU F H, HUI R T , et al. Experimental investigation and engineering practice of PTC on increasing WESP collection efficiency[J]. Proceedings of the CSEE, 2016,36(16):4349-4355.
    [14]
    朱立平, 谭厚章, 熊英莹 , 等. 锅炉烟气中微细颗粒的湿式相变凝聚试验研究[J]. 科学技术与工程, 2015,15(1):210-215.

    ZHU L P, TAN H Z, XIONG Y Y , et al. Experimental research on wet phase change condensation of fine particle in boiler flue gas[J]. Science Technology and Engineering, 2015,15(1):210-215.
    [15]
    熊英莹, 谭厚章 . 湿式相变冷凝除尘技术对微细颗粒物的脱除研究[J]. 洁净煤技术, 2015,21(2):20-24.

    XIONG Y Y, TAN H Z . Influence of wet phase transition condensate dust removal technology on fine particle removal[J]. Clean Coal Technology, 2015,21(2):20-24.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1068) PDF Downloads(717) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return