Volume 7 Issue 2
Mar.  2017
Turn off MathJax
Article Contents
HUO Shouliang, MA Chunzi, XI Beidou, HE Zhuoshi. Progress in research on lake nutrient criteria[J]. Journal of Environmental Engineering Technology, 2017, 7(2): 125-133. doi: 10.3969/j.issn.1674-991X.2017.02.019
Citation: HUO Shouliang, MA Chunzi, XI Beidou, HE Zhuoshi. Progress in research on lake nutrient criteria[J]. Journal of Environmental Engineering Technology, 2017, 7(2): 125-133. doi: 10.3969/j.issn.1674-991X.2017.02.019

Progress in research on lake nutrient criteria

doi: 10.3969/j.issn.1674-991X.2017.02.019
More Information
  • Corresponding author: Chunzi MA
  • Received Date: 2016-08-15
  • Publish Date: 2017-03-20
  • Lake nutrient criteria provide science foundation and important tools for the comprehensive evaluation, prevention, control and management of lake eutrophication. The latest research progress of lake nutrient criteria was discussed, and the advantages, disadvantages and applicability of the different methods, such as statistical analysis, stressor-response model, model extrapolation and paleolimnology, analyzed. The development tendencies and the challenges of determining nutrient criteria were discussed. Reference lakes can reflect the original state of lakes, but reference sites were unavailable. The model extrapolation required sufficient data to identify the appropriate equations for characterizing a waterbody or group of waterbodies, which enhanced the difficulty of nutrient criteria setting. The stressor-response model would become the development direction of nutrient criteria, and the mechanism of stressor-response model should be further studied. On the basis of research on the relationships between water ecological criteria and eutrophication, and the response of nutrient criteria to plankton and to special sensitive species, the establishment of nutrient criteria should be closely integrated with the requirements of lake management.

     

  • loading
  • [1]
    HAWKINS C P, OLSON J R, HILL R A . The reference condition:predicting benchmarks for ecological and water-quality assessments[J]. Journal of the North American Benthological Society, 2010,29:312-343.
    doi: 10.1899/09-092.1
    [2]
    US Environmental Protection Agency. National strategy for the development of regional nutrient criteria[R].Washington DC:US Environmental Protection Agency. Office of Water, 1998.
    [3]
    US Environmental Protection Agency. Nutrient criteria technical guidance manual:lakes and reservoirs[R].Washington DC:US Environmental Protection Agency. Office of Water, 2000.
    [4]
    LAMON E C, QIAN S S . Regional scale stressor-response models in aquatic ecosystems[J]. Journal of the American Water Resources Association, 2008,44:771-781.
    doi: 10.1111/j.1752-1688.2008.00205.x
    [5]
    SOLHEIM A L . Reference conditions of European lakes:indicators and methods for the water framework directive assessment of reference conditions[EB/OL]. Draft Version 5.( 2005-05-30). .
    [6]
    US Environmental Protection Agency. Using stressor-response relationships to derive numeric nutrient criteria[R].Washington DC:US Environmental Protection Agency. Office of Water, 2010.
    [7]
    OMERNIK J M . Ecoregions of the conterminous United States[J]. Annals of the Association of American Geographers, 1987,77(1):118-125.
    doi: 10.1111/j.1467-8306.1987.tb00149.x
    [8]
    CARDOSO A C, SOLIMINI A, PREMAZZI G , et al. Phosphorus reference concentrations in European lakes[J]. Hydrobiologia, 2007,584(1):3-12.
    doi: 10.1007/s10750-007-0584-y
    [9]
    CARVALHO L, SOLIMINI A, PHILLIPS , et al. Chlorophyll reference conditions for European lake types used for intercalibration of ecological status[J]. Aquatic Ecology, 2008,42:203-211.
    doi: 10.1007/s10452-008-9189-4
    [10]
    BOULEAU G, PONT D . Did you say reference conditions? ecological and socio-economic perspectives on the European water framework directive[J]. Environmental Science & Policy, 2015,47:32-41.
    [11]
    POIK$\bar{A}$NE S, ALVES M H, ARGILLIER C , et al. Defining chlorophyll-a reference conditions in European lakes[J]. Environmental Management, 2010,45:1286-1298.
    doi: 10.1007/s00267-010-9484-4
    [12]
    DODDS W K, CARNEY E, ANGELO R T . Determining ecoregional reference conditions for nutrients,secchi depth and chlorophyll a in Kansas Lakes and Reservoirs[J]. Lake and Reservoir Management, 2006,22(2):151-159.
    doi: 10.1080/07438140609353892
    [13]
    DODDS W K, OAKES R M . A technique for establishing reference nutrient concentrations across watersheds affected by humans[J]. Limnology and Oceanography Methods, 2004,2(10):333-341.
    doi: 10.4319/lom.2004.2.333
    [14]
    SUPLEE M W, VARGHESE A, CLELAND J . Developing nutrient criteria for streams:an evaluation of the frequency distribution method[J]. Journal of the American Water Resources Association, 2007,43(2):453-471.
    doi: 10.1111/jawr.2007.43.issue-2
    [15]
    SÁNCHEZ-MONTOYA M M, ARCE M I, VIDAL-ABARCA M R , et al. Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive[J]. Water Research, 2012,46:2257-2269.
    doi: 10.1016/j.watres.2012.01.042
    [16]
    CUNHA D G F, DODDS W K . CALIJURI M D C.Defining nutrient and biochemical oxygen demand baselines for tropical rivers and streams in São Paulo State (Brazil):a comparison between reference and impacted sites[J]. Environmental Management, 2011,48:945-956.
    doi: 10.1007/s00267-011-9739-8
    [17]
    CUNHA D G F, OGURA A P, CALIJURI M D C . Nutrient reference concentrations and trophic state boundaries in subtropical reservoirs[J]. Water Science & Technology, 2012,65(8):1461-1467.
    doi: 10.2166/wst.2012.035 pmid: 22466594
    [18]
    MATTHAEI C D, PIGGOTT J J, TOWNSEND C R . Multiple stressors in agricultural streams:interactions among sediment addition,nutrient enrichment and water abstraction[J]. Journal of Applied Ecology, 2010,47(3):639-649.
    doi: 10.1111/jpe.2010.47.issue-3
    [19]
    HAGGARD B E, SCOTT J T, LONGING S D . Sestonic chlorophyll-a shows hierarchical structure and thresholds with nutrients across the Red River Basin,USA[J]. Journal of Environmental Quality, 2013,42:437-445.
    doi: 10.2134/jeq2012.0181 pmid: 23673836
    [20]
    LEGENDRE P, LEGENDRE L . Numerical ecology[M].2nd ed. Amsterdam:Elsevier, 1998.
    [21]
    QIAN S S, KING R S, RICHARDSON C J . Two methods for the detection of environmental thresholds[J]. Ecology Modelling, 2003,166:87-97.
    doi: 10.1016/S0304-3800(03)00097-8
    [22]
    RAMIN M, STREMILOV S, LABENCKI T , et al. Integration of numerical modeling and Bayesian analysis for setting water quality criteria in Hamilton Harbour,Ontario,Canada[J]. Environmental Modelling & Software, 2011,26:337-353.
    [23]
    STOW C A, CHA Y K, QIAN S S . A Bayesian hierarchical model to guide development and evaluation of substance objectives under the 2012 Great Lakes Water Quality Agreement[J]. Journal of Great Lakes Research, 2014,40(Suppl 3):49-55.
    doi: 10.1016/j.jglr.2014.07.005
    [24]
    QIAN S S, MILTNER R J . A continuous variable Bayesian networks model for water quality modeling:a case study of setting nitrogen criterion for small rivers and streams in Ohio,USA[J]. Environmental Modelling & Software, 2015,69:14-22.
    [25]
    JANSE J H, SENERPONT D L N D, SCHEFFER M , et al. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PCLake[J]. Limnologica, 2008,38(3/4):203-219.
    doi: 10.1016/j.limno.2008.06.001
    [26]
    BLINDOW G A, HAREGY A . Long-term pattern of alternative stable states in two shallow eutrophic lakes[J]. Freshwater Biology, 1993,30:1159-1167.
    [27]
    HOSPER S H . Stable states,buffers and switches:an ecosystem approach to the restoration management of shallow lakes in the Netherlands[J]. Water Science & Technology, 1998,37(3):151-164.
    [28]
    HIRT U, MAHNKOPF J, GADEGAST M , et al. Reference conditions for rivers of the German Baltic Sea catchment:reconstructing nutrient regimes using the model MONERIS[J]. Regional Environmental Change, 2014,14:1123-1138.
    doi: 10.1007/s10113-013-0559-7
    [29]
    KIM D K, ZHANG W T, HIRIART-BAER V , et al. Towards the development of integrated modelling systems in aquatic biogeochemistry:a Bayesian approach[J]. Journal of Great Lakes Research, 2014,40(Suppl 3):73-87.
    doi: 10.1016/j.jglr.2014.04.005
    [30]
    MAKAREWICZ J C, LEWIS T W, REA E , et al. Using SWAT to determine reference nutrient conditions for small and large streams[J]. Journal of Great Lakes Research, 2015,41:123-135.
    doi: 10.1016/j.jglr.2014.12.022
    [31]
    SALERNO F, VIVIANO G, CARRARO E , et al. Total phosphorus reference condition for subalpine lakes:a comparison among traditional methods and a new process-based watershed approach[J]. Journal of Environmental Management, 2014,145:94-105.
    doi: 10.1016/j.jenvman.2014.06.011 pmid: 25014886
    [32]
    BENNION H, SIMPSON G L, ANDERSON N J , et al. Defining ecological and chemical reference conditions and restoration targets for nine European lakes[J]. Journal of Paleolimnology, 2011,45:415-431.
    doi: 10.1007/s10933-010-9418-4
    [33]
    BENNION H, FLUIN J, SIMPSON G L . Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms[J]. Journal of Applied Ecology, 2004,41:124-138.
    doi: 10.1111/jpe.2004.41.issue-1
    [34]
    HEINSALU A, ALLIKSAAR T, LEEBEN A , et al. Sediment diatom assemblages and composition of pore-water dissolved organic matter reflect recent eutrophication history of Lake Peipsi (Estonia/Russia)[J]. Hydrobiologia, 2007,584:133-143.
    [35]
    HAUSMANN S, CHARLES D F, GERRITSEN J , et al. A diatom-based biological condition gradient (BCG) approach for assessing impairment and developing nutrient criteria for streams[J]. Science of the Total Environment, 2016,562:914-927.
    doi: 10.1016/j.scitotenv.2016.03.173 pmid: 27128024
    [36]
    HEATHERLY T Ⅱ . Acceptable nutrient concentrations in agriculturally dominant landscapes:a comparison of nutrient criteria approaches for Nebraska rivers and streams[J]. Ecological Indicators, 2014,45:355-363.
    doi: 10.1016/j.neuro.2014.05.003 pmid: 24875485
    [37]
    国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002[S]. 北京: 标准出版社, 2002.
    [38]
    姜甜甜, 高如泰, 席北斗 , 等. 云贵高原湖区湖泊营养物生态分区技术方法研究[J]. 环境科学, 2010,31(11):2599-2606.

    JIANG T T, GAO R T, XI B D , et al. study on ecoregion techniques of lake nutrients in Yunnan-Guizhou Plateau Lake Regions[J]. Environmental Science, 2010,31(11):2599-2606.
    [39]
    高如泰, 姜甜甜, 席北斗 , 等. 湖北省湖泊营养物生态分区技术方法研究[J]. 环境科学研究, 2011,24(1):43-49.

    GAO R T, JIANG T T, XI B D , et al. Study on ecoregion techniques of lake nutrients in Hubei District[J]. Research of Environmental Sciences, 2011,24(1):43-49.
    [40]
    张德禄, 刘永定, 胡春香 . 基于营养盐的中国湖泊生态分区框架与指标体系初探[J]. 湖泊科学, 2011,23(6):821-827.

    ZHANG D L, LIU Y D, HU C X . Ecoregional frame and indices system based on nutrients in Chinese lakes[J]. Journal of Lake Science, 2011,23(6):821-827.
    [41]
    姜甜甜 . 我国湖泊生态分区技术及应用研究[D]. 武汉:武汉大学, 2014.
    [42]
    HUO S L, MA C Z, XI B D , et al. Lake ecoregions and nutrient criteria development in China[J]. Ecological Indicators, 2014,46:1-10.
    doi: 10.1016/j.jenvman.2019.109923 pmid: 32090794
    [43]
    柯新利, 刘曼, 邓祥征 . 中国中东部平原亚热带湿润区湖泊营养物生态分区[J]. 生态学报, 2012,32(1):38-47.

    KE X L, LIU M, DENG X Z . Lake nutrient ecosystems in the east-central moist subtropical plain of China[J]. Acta Ecologica Sinica, 2012,32(1):38-47.
    [44]
    柯新利, 刘曼, 邓祥征 . 基于遥感反演参数与双约束空间聚类算法的湖泊营养物生态分区[J]. 地理科学进展, 2012,31(3):315-323.
    doi: 10.11820/dlkxjz.2012.03.006

    KE X L, LIU M, DENG X Z . Lake nutrient concentration oriented ecological division based on remote sensing inversion parameters and dual-constraint spatial clustering algorithm[J]. Progress in Geography, 2012,31(3):315-323. doi: 10.11820/dlkxjz.2012.03.006
    [45]
    柯新利, 刘曼, 邓祥征 . 湖泊营养物生态分区:中国东北的分区试验[J]. 自然资源学报, 2014,29(5):789-800.

    KE X L, LIU M, DENG X Z . Ecoregion of lake nutrients: a case study of Northeast China[J]. Journal of Natural Resources, 2014,29(5):789-800.
    [46]
    霍守亮, 陈奇, 席北斗 , 等. 湖泊营养物基准的制定方法研究进展[J]. 生态环境学报, 2009,18(2):743-748.

    HUO S L, CHEN Q, XI B D , et al. A literature review for lake nutrient criteria development[J]. Ecology and Environmental Sciences, 2009,18(2):743-748.
    [47]
    霍守亮, 陈奇, 席北斗 , 等. 湖泊营养物基准的候选变量和指标[J]. 生态环境学报, 2010,19(6):1445-1451.

    HUO S L, CHEN Q, XI B D , et al. Candidate variables and indicator for lake nutrient criteria[J]. Ecology and Environmental Sciences, 2010,19(6):1445-1451.
    [48]
    陈奇, 霍守亮, 席北斗 , 等. 湖泊营养物参照状态建立方法研究[J]. 生态环境学报, 2010,19(3):544-549.

    CHEN Q, HUO S L, XI B D , et al. Study on establishing lake reference condition for nutrient[J]. Ecology and Environmental Sciences, 2010,19(3):544-549.
    [49]
    郑丙辉, 许秋瑾, 周保华 , 等. 水体营养物及其响应指标基准制定过程中建立参照状态的方法:以典型浅水湖泊太湖为例[J]. 湖泊科学, 2009,21(1):21-26.

    ZHENG B H, XU Q J, ZHOU B H , et al. Building nutrient and its response indications reference state for criteria enaction: on the case of Lake Taihu, a typical shallow lake in eastern China[J]. Journal of Lake Science, 2009,21(1):21-26.
    [50]
    张礼兵, 霍守亮, 周玉良 , 等. 基于系统动力学的湖泊营养物基准参照状态研究[J]. 环境科学学报, 2011,31(6):1254-1262.

    ZHANG L B, HUO S L, ZHOU Y L , et al. Establishing lake reference conditions for nutrient criteria based on system dynamics[J]. Acta Scientiae Circumstantiae, 2011,31(6):1254-1262.
    [51]
    张礼兵, 张展羽, 霍守亮 , 等. 基于模型反演确定邛海湖泊营养物的参照状态[J]. 环境工程技术学报, 2012,2(3):193-199.
    doi: 10.3969/j.issn.1674-991X.2012.03.029

    ZHANG L B, ZHANG Z Y, HUO S L , et al. Establishing nutrient criteria reference conditions based on model retrieval for lake Qionghai[J]. Journal of Environmental Engineering Technology, 2012,2(3):193-199. doi: 10.3969/j.issn.1674-991X.2012.03.029
    [52]
    HUO S L, ZAN F Y, CHEN Q , et al. Determining reference conditions for nutrients,chlorophyll a and Secchi depth in Yungui Plateau ecoregion lakes,China[J]. Water and Environment Journal, 2012,26:324-334.
    doi: 10.1111/j.1747-6593.2011.00292.x
    [53]
    HUO S L, XI B D, SU J , et al. Determining reference conditions for TN,TP,SD and Chl-a in eastern plain ecoregion lakes,China[J]. Journal of Environmental Sciences, 2013,25(5):1001-1006.
    doi: 10.1016/s1001-0742(12)60135-1 pmid: 24218831
    [54]
    HUO S L, XI B D, SU J , et al. Defining physico-chemical variables,chlorophyll-a and Secchi depth reference conditions in northeast eco-region lakes,China[J]. Environmental Earth Sciences, 2014,71(3):995-1005.
    doi: 10.1007/s12665-013-2656-9
    [55]
    HUO S L, MA C Z, XI B D , et al. Defining reference nutrient concentrations in southeast eco-region lakes,China[J]. CLEAN-Soil,Air,Water, 2014,42(8):1066-1075.
    doi: 10.1002/clen.201300202
    [56]
    HUO S L, MA C Z, XI B D , et al. Establishing water quality reference conditions for nutrients,chlorophyll a and Secchi depth for 7 typical lakes in arid and semiarid ecoregion,China[J]. Environmental Earth Sciences, 2015,73:4739-4748.
    doi: 10.1007/s12665-014-3760-1
    [57]
    HUO S L, XI B D, MA C Z , et al. Stressor-response models:a practical application for the development of lake nutrient criteria in China[J]. Environmental Science & Technology, 2013,47(21):11922-11923.
    doi: 10.1021/es4037034 pmid: 24098912
    [58]
    HUO S L, MA C Z, XI B D , et al. Determining ecoregional numeric nutrient criteria by stressor-response models in Yungui ecoregion lakes,China[J]. Environmental Science and Pollution Research, 2014,21:8831-8846.
    doi: 10.1007/s11356-014-2819-6 pmid: 24696216
    [59]
    ZHANG Y L, HUO S L, MA C Z , et al. Using stressor-response models to derive numeric nutrient criteria for lakes in the Eastern Plain Ecoregion,China[J]. CLEAM-Soil,Air,Water, 2014,42(11):1509-1517.
    [60]
    HUO S L, MA C Z, HE Z S , et al. Prediction of physico-chemical variables and chlorophyll a criteria for ecoregion lakes using the ratios of land use to lake depth[J]. Environmental Earth Sciences, 2015,74(5):3709-3719.
    [61]
    HUO S L, MA C Z, XI B D , et al. Nonparametric approaches for estimating regional lake nutrient thresholds[J]. Ecological Indicators, 2015,58:225-234.
    doi: 10.1016/j.ecolind.2015.05.065
    [62]
    吴超, 胡友彪, 苏婧 , 等. 基于压力响应关系法的湖泊营养物基准制定[J]. 环境工程学报, 2015,9(6):2631-2638.

    WU C, HU Y B, SU J , et al. Using stressor-response analysis to derive nutrient criteria for lakes[J]. Chinese Journal of Environmental Engineering, 2015,9(6):2631-2638.
    [63]
    ZHANG Y L, HUO S L, LI R H , et al. Diatom taxa and assemblages for establishing nutrient criteria of lakes with anthropogenic hydrologic alteration[J]. Ecological Indicators, 2016,67:166-173.
    doi: 10.1016/j.ecolind.2016.02.048
    [64]
    ZHANG Y L, HUO S L, XI B D , et al. Establishing nutrient criteria in nine typical lakes,China:a conceptual model[J]. CLEAN-Soil, Air, Water, 2016.doi: 10.1002/clen.201500 505.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1490) PDF Downloads(929) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return