Volume 14 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
ZHAO Z C,HUANG X M,YIN H L,et al.Review on diagnostic technologies of illicit discharge and groundwater infiltration in the storm drainage network[J].Journal of Environmental Engineering Technology,2024,14(1):278-288 doi: 10.12153/j.issn.1674-991X.20230359
Citation: ZHAO Z C,HUANG X M,YIN H L,et al.Review on diagnostic technologies of illicit discharge and groundwater infiltration in the storm drainage network[J].Journal of Environmental Engineering Technology,2024,14(1):278-288 doi: 10.12153/j.issn.1674-991X.20230359

Review on diagnostic technologies of illicit discharge and groundwater infiltration in the storm drainage network

doi: 10.12153/j.issn.1674-991X.20230359
  • Received Date: 2023-05-10
  • Stormwater network is an important municipal infrastructure to mitigate urban waterlogging and improve water environmental quality. Owing to the aging and corrosion, and improper construction of pipes, and so on, the urban stormwater network after construction in China often confronts the challenges of illicit discharge and groundwater infiltration, which restricts the efficient functioning of stormwater network. Technologies of diagnosing inflow and infiltration into drainage system can provide important support to identify and locate the illicit discharge and groundwater infiltration of stormwater network. The basic principles, research processes and applicable characteristics of the diagnostic technologies for inflow and infiltration into drainage networks (including geophysical detection, flow analysis, tracer parameter analysis, and hydrodynamic inversion model technologies) were reviewed, and then the practicalities, the key points of application, diagnostic levels, and development stages of these technologies were analyzed and compared. According to this, the future development trend of diagnostic technologies was proposed. The results showed that: 1) The tracer parameter analysis technology could identify and quantify the illicit discharge and groundwater infiltration without interfering with the normal operation of stormwater network, and provide retrofit priorities, resulting in significant economic and environmental benefits. 2) The fiber-optic distributed temperature sensing (FDTS) technology and hydrodynamic inversion model technology had outstanding advantages in non-interference locating of the illicit discharge and groundwater infiltration into stormwater network. The former was easy to implement and had high locating accuracy, while the latter had the characteristics of low cost and could be used to evaluate the levels of illicit discharge and groundwater infiltration. These two technologies could be selected according to local conditions. 3) The future development trend of diagnostic technology would be towards low-cost, non-interference, quantifiable, and locatable direction. By evaluating the comprehensive application effects of different technologies in the current and future, it was found that single diagnostic technology was difficult to possess the desired characteristics, while a hierarchical diagnostic system based on tracer parameter analysis technology coupled with FDTS technology or hydrodynamic inversion model technology had the advantage potential of achieving the future development goal. This study could provide references to carry out scientific application and optimization innovation of diagnostic technologies.

     

  • loading
  • [1]
    住房和城乡建设部. 2021年中国城市建设状况公报[A/OL]. http://www.chinajsb.cn/html/202210/11/29665.html.
    [2]
    XU Z X, XU J, YIN H L, et al. Urban river pollution control in developing countries[J]. Nature Sustainability,2019,2(3):158-160. doi: 10.1038/s41893-019-0249-7
    [3]
    徐祖信, 徐晋, 金伟, 等. 我国城市黑臭水体治理面临的挑战与机遇[J]. 给水排水,2019,55(3):1-5.

    XU Z X, XU J, JIN W, et al. Challenges and opportunities faced by urban black and odorous water treatment in China[J]. Water & Wastewater Engineering,2019,55(3):1-5.
    [4]
    徐祖信, 张竞艺, 徐晋, 等. 城市排水系统提质增效关键技术研究: 以马鞍山市为例[J]. 环境工程技术学报,2022,12(2):348-355.

    XU Z X, ZHANG J Y, XU J, et al. Study on key technologies for improving quality and efficiency of urban drainage system: a case of Ma’anshan City[J]. Journal of Environmental Engineering Technology,2022,12(2):348-355.
    [5]
    尹海龙, 王月, 赵刚. 分流制系统雨水管网混接旱天排放污染特征研究[J]. 环境科学学报,2019,39(10):3551-3558.

    YIN H L, WANG Y, ZHAO G. A study on characteristics of dry-weather discharge pollution from separate storm drains with inappropriate flow entries[J]. Acta Scientiae Circumstantiae,2019,39(10):3551-3558.
    [6]
    陈唯, 肖涛, 李德师, 等. 基于检查井液位监测的雨污混接诊断方法[J]. 给水排水,2021,57(10):140-144.

    CHEN W, XIAO T, LI D S, et al. Investigation of illicit discharge based on manhole water level monitoring[J]. Water & Wastewater Engineering,2021,57(10):140-144.
    [7]
    WEISS G, BROMBACH H, HALLER B. Infiltration and inflow in combined sewer systems: long-term analysis[J]. Water Science and Technology:a Journal of the International Association on Water Pollution Research,2002,45(7):11-19. doi: 10.2166/wst.2002.0112
    [8]
    MARTINEZ S E, ESCOLERO O, WOLF L. Total urban water cycle models in semiarid environments: quantitative scenario analysis at the area of San Luis Potosi, Mexico[J]. Water Resources Management,2011,25(1):239-263. doi: 10.1007/s11269-010-9697-6
    [9]
    中国工程建设标准化协会. 城镇排水管道混接调查及治理技术规程: T/CECS 758—2020[S]. 北京: 中国计划出版社, 2020.
    [10]
    XU Z X, YIN H L, LI H Z. Quantification of non-stormwater flow entries into storm drains using a water balance approach[J]. Science of the Total Environment,2014,487:381-388. doi: 10.1016/j.scitotenv.2014.04.035
    [11]
    Environmental Protection Agency. Illicit discharge detection and elimination: a guidance manual for program development and technical assessments[S/OL]. Washington DC:US Environmental Protection Agency. (2004-08). https://nepis.epa.gov/Exe/ZyPDF.cgi/20017KFK.PDF?Dockey=20017KFK.PDF.
    [12]
    XU Z X, QU Y, WANG S Y, et al. Diagnosis of pipe illicit connections and damaged points in urban stormwater system using an inversed optimization model[J]. Journal of Cleaner Production,2021,292:126011. doi: 10.1016/j.jclepro.2021.126011
    [13]
    ZHAO Z C, YIN H L, XU Z X, et al. Pin-pointing groundwater infiltration into urban sewers using chemical tracer in conjunction with physically based optimization model[J]. Water Research,2020,175:115689. doi: 10.1016/j.watres.2020.115689
    [14]
    NIENHUIS J, de HAAN C, LANGEVELD J, et al. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections[J]. Water Science and Technology,2013,67(12):2712-2718. doi: 10.2166/wst.2013.176
    [15]
    LEPOT M, MAKRIS K F, CLEMENS F H L R. Detection and quantification of lateral, illicit connections and infiltration in sewers with Infra-Red camera: conclusions after a wide experimental plan[J]. Water Research,2017,122:678-691. doi: 10.1016/j.watres.2017.06.030
    [16]
    尹海龙, 郭龙天, 胡意杨, 等. 基于光纤分布式测温的污水管道入流识别方法研究[J]. 中国环境科学,2022,42(4):1737-1744.

    YIN H L, GUO L T, HU Y Y, et al. A method on sewer inflow identification using fiber-optic distributed temperature sensing[J]. China Environmental Science,2022,42(4):1737-1744.
    [17]
    郑洪标, 刘志国, 吴凡华, 等. 一种用于水上和淤泥行走的漂浮轮胎及管道机器人: CN210566983U[P]. 2020-05-19.
    [18]
    覃新元, 雷宗辉, 陈俊, 等. 排水管道不停运的数字化服务成套技术实现和示范[J]. 中国给水排水,2023,39(2):94-99.

    QIN X Y, LEI Z H, CHEN J, et al. Complete set of digital service technology and demonstration for continuous operation of drainage pipelines[J]. China Water & Wastewater,2023,39(2):94-99.
    [19]
    蔡兆祝. 基于两栖机器人的雨污管道自动化巡检技术研究[D]. 杭州: 浙江大学, 2021.
    [20]
    HOES O A C, SCHILPEROORT R P S, LUXEMBURG W M J, et al. Locating illicit connections in storm water sewers using fiber-optic distributed temperature sensing[J]. Water Research,2009,43(20):5187-5197. doi: 10.1016/j.watres.2009.08.020
    [21]
    KESSILI A, VOLLERTSEN J, NIELSEN A H. Automated monitoring system for events detection in sewer network by distribution temperature sensing data measurement[J]. Water Science and Technology,2018,78(7):1499-1508. doi: 10.2166/wst.2018.425
    [22]
    ALMEIDA M C, BRITO R S. System diagnostics using flow data: quantifying sources and opportunities for performance improvement[C]//Global Solutions for Urban Drainage. Lloyd Center Doubletree Hotel, Portland, Oregon, USA. Reston, VA: American Society of Civil Engineers, 2002: 1-13.
    [23]
    肖涛. 排水管网系统运行状态诊断研究[D]. 上海: 同济大学, 2020.
    [24]
    徐祖信, 汪玲玲, 尹海龙. 基于水质特征因子和Monte Carlo理论的雨水管网混接诊断方法[J]. 同济大学学报(自然科学版),2015,43(11):1715-1721.

    XU Z X, WANG L L, YIN H L. Quantification of non-storm water flow entries into storm drains using Monte Carlo based marker species approach[J]. Journal of Tongji University (Natural Science),2015,43(11):1715-1721.
    [25]
    王诗婧. 基于截污效能提升的污水管网系统诊断与优化调控研究[D]. 上海: 同济大学, 2017.
    [26]
    YIN H L, XIE M, ZHANG L Y, et al. Identification of sewage markers to indicate sources of contamination: low cost options for misconnected non-stormwater source tracking in stormwater systems[J]. Science of the Total Environment,2019,648:125-134. doi: 10.1016/j.scitotenv.2018.07.448
    [27]
    QUYEN D T T, MASAHIRO O, OTAKI Y, et al. Sewage markers as determinants to differentiate origins of emerging organic pollutants in an urban Sri Lankan water drainage network[J]. Water,2021,13(20):2898. doi: 10.3390/w13202898
    [28]
    XU Z X, WANG L L, YIN H L, et al. Source apportionment of non-storm water entries into storm drains using marker species: modeling approach and verification[J]. Ecological Indicators,2016,61:546-557. doi: 10.1016/j.ecolind.2015.10.006
    [29]
    周骅, 智国铮. 基于三维荧光光谱和水质特征因子检测技术的排水管网地下水入渗分析研究[J]. 给水排水,2022,58(5):128-133.

    ZHOU H, ZHI G Z. Groundwater infiltration analysis of urban drainage networks based on 3D-EEM technology and marker species technology[J]. Water & Wastewater Engineering,2022,58(5):128-133.
    [30]
    尹海龙, 郭龙天, 解铭, 等. 基于特征因子的食品工业废水排放追踪方法[J]. 同济大学学报(自然科学版),2019,47(8):1168-1174.

    YIN H L, GUO L T, XIE M, et al. Source tracking of food industry wastewater discharge into sewers using marker species[J]. Journal of Tongji University (Natural Science),2019,47(8):1168-1174.
    [31]
    孟莹莹, 冯沧, 李田, 等. 不同混接程度分流制雨水系统旱流水量及污染负荷来源研究[J]. 环境科学,2009,30(12):3527-3533.

    MENG Y Y, FENG C, LI T, et al. Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge[J]. Environmental Science,2009,30(12):3527-3533.
    [32]
    LITTON RACHEL M, HO A J, BRAM S, et al. Evaluation of chemical, molecular, and traditional markers of fecal contamination in an effluent dominated urban stream[J]. Environmental Science & Technology,2010,44(19):7369-7375.
    [33]
    TURNER R D R, ST J WARNE M, DAWES L A, et al. Greywater irrigation as a source of organic micro-pollutants to shallow groundwater and nearby surface water[J]. Science of the Total Environment,2019,669:570-578. doi: 10.1016/j.scitotenv.2019.03.073
    [34]
    HOUHOU J, LARTIGES B S, FRANCE-LANORD C, et al. Isotopic tracing of clear water sources in an urban sewer: a combined water and dissolved sulfate stable isotope approach[J]. Water Research,2010,44(1):256-266. doi: 10.1016/j.watres.2009.09.024
    [35]
    KRACHT O, GRESCH M, GUJER W. A stable isotope approach for the quantification of sewer infiltration[J]. Environmental Science & Technology,2007,41(16):5839-5845.
    [36]
    CHEN H, LIAO Z L, GU X Y, et al. Anthropogenic influences of paved runoff and sanitary sewage on the dissolved organic matter quality of wet weather overflows: an excitation–emission matrix parallel factor analysis assessment[J]. Environmental Science & Technology,2017,51(3):1157-1167.
    [37]
    LIAO Z L, ZHAO Z C, CHEN H, et al. Quantitative source apportionment of dissolved organic matters in wet weather overflows of storm drainage systems based on degradation potential index and end member mixing model[J]. Science of the Total Environment,2021,792:148493. doi: 10.1016/j.scitotenv.2021.148493
    [38]
    GONSIOR M, ZWARTJES M, COOPER W J, et al. Molecular characterization of effluent organic matter identified by ultrahigh resolution mass spectrometry[J]. Water Research,2011,45(9):2943-2953. doi: 10.1016/j.watres.2011.03.016
    [39]
    朱弈, 叶建锋, 孙晓楠, 等. 基于溶解性有机物分子指纹特征解析城市河道污染来源与机制[J]. 环境科学,2023,44(8):4353-4363.

    ZHU Y, YE J F, SUN X N, et al. Analyzing the pollution sources and mechanisms of urban rivers based on identifying the molecular signature of dissolved organic matter[J]. Environmental Science,2023,44(8):4353-4363.
    [40]
    ROSSMAN L. Storm water management model reference manual volume Ⅱ-hydraulics[M]. Washington DC: US Environmental Protection Agency. (2017-08-07)[2018-04-17].https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100S9AS.pdf.
    [41]
    季骁楠. 城市市政排水管网污染物溯源技术研究进展[J]. 环境工程技术学报,2022,12(4):1153-1161.

    JI X N. Recent advances in pollution source identification technologies in municipal drainage pipe networks[J]. Journal of Environmental Engineering Technology,2022,12(4):1153-1161. ⊗
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article Views(153) PDF Downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return