Volume 14 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
XU X,SUN Y Y,XI B D,et al.Research on the effect of atmospheric pressure fluctuation on the migration and transformation of benzene in soil based on TMVOC simulation[J].Journal of Environmental Engineering Technology,2024,14(2):510-519 doi: 10.12153/j.issn.1674-991X.20230302
Citation: XU X,SUN Y Y,XI B D,et al.Research on the effect of atmospheric pressure fluctuation on the migration and transformation of benzene in soil based on TMVOC simulation[J].Journal of Environmental Engineering Technology,2024,14(2):510-519 doi: 10.12153/j.issn.1674-991X.20230302

Research on the effect of atmospheric pressure fluctuation on the migration and transformation of benzene in soil based on TMVOC simulation

doi: 10.12153/j.issn.1674-991X.20230302
  • Received Date: 2023-04-18
  • Accepted Date: 2023-12-25
  • Rev Recd Date: 2023-12-22
  • In order to explore the migration and transformation law of benzene series (BTEX) under the fluctuation of atmospheric pressure, and improve the control level of soil and groundwater pollution in petrochemical-polluted sites, a refinery site in northwest China was taken as the research object and, combined with indoor soil column experiment and TMVOC software simulation, BTEX leakage simulation was carried out to explore the migration and transformation law of benzene in the vadose zone and aquifer under different amplitude of atmospheric pressure fluctuation. The results show that the atmospheric pressure cycle fluctuation can cause the gaseous benzene in the vadose zone to migrate to the non-equilibrium state, resulting in the increase of the gaseous mass fraction by 0.1%-0.5%. The conversion of non-aqueous liquid (NAPL) phase pollutants into vapor phase pollutants and their volatilization through the atmosphere is the main way of leakage quality loss, and this transformation will cause atmospheric pollution in the site and its surroundings. At the same time, the amplitude of atmospheric pressure fluctuation is negatively correlated with the time of gaseous transition. The study shows that the atmospheric pressure fluctuation significantly affects the phase transformation and migration process of benzene, promotes the phase transformation of benzene, and makes more benzene transform into gas, resulting in atmospheric environmental pollution.

     

  • loading
  • [1]
    周艳, 姜登登, 孔令雅, 等. 典型农药污染场地地下水中苯系物监控自然衰减研究[J]. 环境科学学报,2022,42(7):380-388.

    ZHOU Y, JIANG D D, KONG L Y, et al. Research on monitored natural attenuation of BTEX in groundwater of a typical pesticide-contaminated site[J]. Acta Scientiae Circumstantiae,2022,42(7):380-388.
    [2]
    谭海涛, 刘涛, 曹兴涛, 等. 石化场地土壤与地下水污染防控研究进展[J]. 应用化工,2020,49(8):2112-2115. doi: 10.3969/j.issn.1671-3206.2020.08.052

    TAN H T, LIU T, CAO X T, et al. Research progress of soil and groundwater environment conservation for petrochemical site[J]. Applied Chemical Industry,2020,49(8):2112-2115. doi: 10.3969/j.issn.1671-3206.2020.08.052
    [3]
    刘海萍, 鲁炳闻, 杨刚, 等. P&T-GC∕MSD测定地表水比对样品中苯系物不确定度的评定[J]. 环境工程技术学报,2017,7(5):600-605.

    LIU H P, LU B W, YANG G, et al. Evaluation of uncertainty of benzene series in surface water by P & T-GC∕MSD in interlaboratory comparison[J]. Journal of Environmental Engineering Technology,2017,7(5):600-605.
    [4]
    董炎青, 陈英, 陈勇, 等. 土壤甲苯泄漏扩散及影响因素的三维数值模拟[J]. 油气田地面工程,2018,37(7):14-18. doi: 10.3969/j.issn.1006-6896.2018.07.005

    DONG Y Q, CHEN Y, CHEN Y, et al. Three-dimensional numerical simulation of toluene leakage and influencing factors in soil[J]. Oil-Gasfield Surface Engineering,2018,37(7):14-18. doi: 10.3969/j.issn.1006-6896.2018.07.005
    [5]
    DAKHEEL ALMALIKI A J, BASHIR M J K, LLAMAS BORRAJO J F. Appraisal of groundwater contamination from surface spills of fluids associated with hydraulic fracturing operations[J]. Science of the Total Environment,2022,815:152949. doi: 10.1016/j.scitotenv.2022.152949
    [6]
    CHEN X L, SHENG Y Z, WANG G C, et al. Microbial compositional and functional traits of BTEX and salinity co-contaminated shallow groundwater by produced water[J]. Water Research,2022,215:118277. doi: 10.1016/j.watres.2022.118277
    [7]
    郑菲, 高燕维, 施小清, 等. 地下水流速及介质非均质性对重非水相流体运移的影响[J]. 水利学报,2015,46(8):925-933.

    ZHENG F, GAO Y W, SHI X Q, et al. Influence of groundwater flow velocity and geological heterogeneity on DNAPL migration in saturated porous media[J]. Journal of Hydraulic Engineering,2015,46(8):925-933.
    [8]
    张晓惠, 王冬梅, 焦永杰, 等. 我国苯的环境暴露、风险评估与管控[J]. 生态毒理学报,2020,15(3):202-209. doi: 10.7524/AJE.1673-5897.20191111001

    ZHANG X H, WANG D M, JIAO Y J, et al. Environmental exposure, risk assessment and control of benzene in China[J]. Asian Journal of Ecotoxicology,2020,15(3):202-209. doi: 10.7524/AJE.1673-5897.20191111001
    [9]
    EL-HASHEMY M A, ALI H M. Characterization of BTEX group of VOCs and inhalation risks in indoor microenvironments at small enterprises[J]. Science of the Total Environment,2018,645:974-983. doi: 10.1016/j.scitotenv.2018.07.157
    [10]
    BOLDEN A L, KWIATKOWSKI C F, COLBORN T. New look at BTEX: are ambient levels a problem[J]. Environmental Science & Technology,2015,49(9):5261-5276.
    [11]
    李凌波, 林大泉, 曾向东, 等. 某石油化工厂区有机污染物的表征I. 土壤[J]. 石油学报(石油加工),2001,17(4):87-96.

    LI L B, LIN D Q, ZENG X D, et al. Characterization of organic contamination at a petrochemical site i. soil[J]. Acta Petroles Sinica,2001,17(4):87-96.
    [12]
    XU C Y, LIN X M, YIN S S, et al. Spatio-vertical characterization of the BTEXS group of VOCs in Chinese agricultural soils[J]. Science of the Total Environment,2019,694:133631. doi: 10.1016/j.scitotenv.2019.133631
    [13]
    葛锋, 张转霞, 扶恒, 等. 我国有机污染场地现状分析及展望[J]. 土壤,2021,53(6):1132-1141.

    GE F, ZHANG Z X, FU H, et al. Distribution of organic contaminated sites in China: statu quo and prospect[J]. Soils,2021,53(6):1132-1141.
    [14]
    孙兴凯, 黄海, 王海东, 等. 大型污染场地修复过程中的问题探讨与工程实践[J]. 环境工程技术学报,2020,10(5):883-890. doi: 10.12153/j.issn.1674-991X.20190216

    SUN X K, HUANG H, WANG H D, et al. Discussion of problems in the process of large-scale contaminate sites remediation and project practice[J]. Journal of Environmental Engineering Technology,2020,10(5):883-890. doi: 10.12153/j.issn.1674-991X.20190216
    [15]
    US EPA. Superfund remedy report[EB/OL]. [2023-09-20]. https://www.epa.gov/remedytech/superfund-remedy-report.
    [16]
    马妍, 董彬彬, 徐东耀, 等. VOCs∕SVOCs污染土壤常用修复技术及其在美国超级基金污染场地中的应用[J]. 环境工程技术学报,2016,6(4):391-396. doi: 10.3969/j.issn.1674-991X.2016.04.058

    MA Y, DONG B B, XU D Y, et al. Common used remediation technologies for volatile and semivolatile organic compounds contaminated soils and their application in US superfund sites[J]. Journal of Environmental Engineering Technology,2016,6(4):391-396. doi: 10.3969/j.issn.1674-991X.2016.04.058
    [17]
    王颖, 陈雷, 杨洋, 等. 基于TMVOC的地下水位波动带苯系物迁移转化模拟[J]. 环境科学研究,2020,33(3):634-642.

    WANG Y, CHEN L, YANG Y, et al. Numerical simulation of BTEX migration in groundwater table fluctuation zone based on TMVOC[J]. Research of Environmental Sciences,2020,33(3):634-642.
    [18]
    杨洋, 赵传军, 李娟, 等. 低温条件下基于TMVOC的土壤气相抽提技术数值模拟[J]. 环境科学研究,2017,30(10):1587-1596.

    YANG Y, ZHAO C J, LI J, et al. Numerical simulation through SVE technique based on TMVOC under low temperature[J]. Research of Environmental Sciences,2017,30(10):1587-1596.
    [19]
    CHEN C, GREEN R E, THOMAS D M, et al. Modeling 1, 3-dichloropropene fumigant volatilization with vapor-phase advection in the soil profile[J]. Environmental Science & Technology,1996,30(1):359.
    [20]
    TILLMAN F D Jr, CHOI J W, SMITH J A. A comparison of direct measurement and model simulation of total flux of volatile organic compounds from the subsurface to the atmosphere under natural field conditions[J]. Water Resources Research,2003,39(10):1284.
    [21]
    TILLMAN F D Jr, SMITH J A. Site characteristics controlling airflow in the shallow unsaturated zone in response to atmospheric pressure changes[J]. Environmental Engineering Science,2005,22(1):25-37. doi: 10.1089/ees.2005.22.25
    [22]
    MASSMANN J, FARRIER D F. Effects of atmospheric pressures on gas transport in the vadose zone[J]. Water Resources Research,1992,28(3):777-791. doi: 10.1029/91WR02766
    [23]
    YANG Y S, LI P P, ZHANG X, et al. Lab-based investigation of enhanced BTEX attenuation driven by groundwater table fluctuation[J]. Chemosphere,2017,169:678-684. doi: 10.1016/j.chemosphere.2016.11.128
    [24]
    CAVELAN A, GOLFIER F, COLOMBANO S, et al. A critical review of the influence of groundwater level fluctuations and temperature on LNAPL contaminations in the context of climate change[J]. Science of the Total Environment,2022,806:150412. doi: 10.1016/j.scitotenv.2021.150412
    [25]
    KACEM M, BENADDA B. Mathematical model for multiphase extraction simulation[J]. Journal of Environmental Engineering,2018,144(6):04018040. doi: 10.1061/(ASCE)EE.1943-7870.0001378
    [26]
    LU N. Time-series analysis for determining vertical air permeability in unsaturated zones[J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125(1):69-71. doi: 10.1061/(ASCE)1090-0241(1999)125:1(69)
    [27]
    PRUESS K, PRUESS K. TOUGH2: a general-purpose numerical simulator for multiphase fluid and heat flow[R]. Berkeley: Lawrence Berkeley National Lab, 1991.
    [28]
    王颖, 汪洋, 唐军, 等. 基于TMVOC的水位波动带土壤气相抽提模拟[J]. 中国环境科学,2020,40(1):350-356. doi: 10.3969/j.issn.1000-6923.2020.01.039

    WANG Y, WANG Y, TANG J, et al. Numerical simulation of SVE in groundwater table fluctuation zone based on TMVOC[J]. China Environmental Science,2020,40(1):350-356. doi: 10.3969/j.issn.1000-6923.2020.01.039
    [29]
    PRUESS K, BATTISTELLI A. TMVOC, a numerical simulator for three-phase non-isothermal flows of multicomponent hydrocarbon mixtures in saturated-unsaturated heterogeneous media [M]. Berkeley: Lawrence Berkeley National Laboratory, 2002.
    [30]
    MA Y, DONG B B, HE X S, et al. Quicklime-induced changes of soil properties: implications for enhanced remediation of volatile chlorinated hydrocarbon contaminated soils via mechanical soil aeration[J]. Chemosphere,2017,173:435-443. doi: 10.1016/j.chemosphere.2017.01.067
    [31]
    时延锋. 典型有机污染物在饱和多孔介质中的运移研究[D]. 南京: 南京大学, 2019.
    [32]
    马妍, 李发生, 徐竹, 等. 生石灰强化机械通风法修复三氯乙烯污染土壤[J]. 环境污染与防治,2014,36(9):1-6. doi: 10.3969/j.issn.1001-3865.2014.09.001

    MA Y, LI F S, XU Z, et al. Quicklime-enhanced remediation of trichloroethylene contaminated soils by mechanical soil aeration[J]. Environmental Pollution and Control,2014,36(9):1-6. doi: 10.3969/j.issn.1001-3865.2014.09.001
    [33]
    SHAN C, STEPHENS D B. An analytical solution for vertical transport of volatile chemicals in the vadose zone[J]. Journal of Contaminant Hydrology,1995,18(4):259-277. doi: 10.1016/0169-7722(95)00011-J
    [34]
    戚圣琦, 侯德义, 王轶冬, 等. VOCs相间非平衡态迁移对土壤修复效果的影响[J]. 环境科学研究,2021,34(6):1464-1472.

    QI S Q, HOU D Y, WANG Y D, et al. The influence of VOCs nonequilibrium transport on soil remediation[J]. Research of Environmental Sciences,2021,34(6):1464-1472.
    [35]
    QI S Q, LUO J, O'CONNOR D, et al. Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone[J]. Journal of Hydrology,2020,580:124353. ⊗ doi: 10.1016/j.jhydrol.2019.124353
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(4)

    Article Metrics

    Article Views(26) PDF Downloads(18) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return