Volume 13 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
LI F,DING H R,YANG Y W,et al.Field testing of pilot-scale bioslurry reactor for coking contaminated site: a case study in Anhui Province[J].Journal of Environmental Engineering Technology,2023,13(5):1725-1731 doi: 10.12153/j.issn.1674-991X.20230145
Citation: LI F,DING H R,YANG Y W,et al.Field testing of pilot-scale bioslurry reactor for coking contaminated site: a case study in Anhui Province[J].Journal of Environmental Engineering Technology,2023,13(5):1725-1731 doi: 10.12153/j.issn.1674-991X.20230145

Field testing of pilot-scale bioslurry reactor for coking contaminated site: a case study in Anhui Province

doi: 10.12153/j.issn.1674-991X.20230145
  • Received Date: 2023-02-24
  • Accepted Date: 2023-06-12
  • Rev Recd Date: 2023-04-10
  • Polycyclic aromatic hydrocarbons (PAHs), especially high-molecular-weight PAHs, are the characteristic pollutants in coking contaminated sites, which are documented as highly toxic and recalcitrant to degrade. Due to the high controllability and high efficiency for insoluble organic pollutants, bioslurry reactor technology is a promising engineering process for soil remediation. To explore the variations of microbial communities after inoculation, and optimize the fluctuation range of solid content and the key parameters of microbial reaction, a self-developed 1 m3 slurry reactor tank combined with commercialized PAHs-degrading agent was adopted to conduct a pilot test at a representative contaminated field. The results showed that the microorganisms grew rapidly at the 3rd to 6th week under the stimulation of nutrients, reflected by the obvious proliferation of genus such as Hydrogenophaga, Sphingomonadaceae, and Pseudomonas, which were likely involved in the degradation of PAHs. Meanwhile, the concentrations of representative high molecular weight PAHs, namely benzo[a]anthracene, benzo[b]fluoranthene and benzo[a]pyrene, were reduced from several times the control target of Class 1 of building land in Soil Environmental Quality Risk Control Standard for Soil contamination of Development Land (Trial) (GB 36600-2018) to below the target value. In view of the lack of actual site pilot scale data in China, this study obtained reliable bioslurry reactor operation data and promoted the technology to engineering scale in China.

     

  • loading
  • [1]
    李伟, 王华伟, 孙英杰, 等. 焦化场地多环芳烃(PAHs)污染特征和修复技术研究进展[C]//中国环境科学学会2022年科学技术年会: 环境工程技术创新与应用分会场论文集(一). 北京: 中国环境科学学会, 2022.
    [2]
    TUHULOULA A, ALTWAY A, JULIASTUTI S R, et al. Biodegradation of soils contaminated with naphthalene in petroleum hydrocarbons using bioslurry reactors[J]. IOP Conference Series: Earth and Environmental Science,2018,175:012014. doi: 10.1088/1755-1315/175/1/012014
    [3]
    刘磊, 李习武, 刘双江, 等.降解多环芳烃的菌株Gordonia sp. He4的分离鉴定及其在菲污染土壤修复过程中的动态变化[J]. 环境科学,2007,28(3):617-622.

    LIU L, LI X W, LIU S J, et al. Isolation and identification of a PAHs-degrading strain Gordonia sp. He4 and its dynamics during bioremediation of phenanthrene polluted soil[J]. Chinese Journal of Environmental Science,2007,28(3):617-622.
    [4]
    钱林波, 元妙新, 陈宝梁.固定化微生物技术修复PAHs污染土壤的研究进展[J]. 环境科学,2012,33(5):1767-1776.

    QIAN L B, YUAN M X, CHEN B L. Research progress about bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique[J]. Chinese Journal of Environmental Science,2012,33(5):1767-1776.
    [5]
    王凌文. 表面活性剂强化微生物修复典型有机物污染场地/土壤[D]. 杭州: 浙江大学, 2016.
    [6]
    FORJÁN R, LORES I, SIERRA C, et al. Bioaugmentation treatment of a PAH-polluted soil in a slurry bioreactor[J]. Applied Sciences,2020,10(8):2837. doi: 10.3390/app10082837
    [7]
    PELAEZ A I, LORES I, SOTRES A, et al. Design and field-scale implementation of an "on site" bioremediation treatment in PAH-polluted soil[J]. Environmental Pollution,2013,181:190-199. doi: 10.1016/j.envpol.2013.06.004
    [8]
    曹斐姝, 陈建平, 谢冬燕, 等.泥浆生物反应器在土壤修复中的应用[J]. 环境工程,2022,40(4):174-181.

    CAO F S, CHEN J P, XIE D Y, et al. Application of slurry bioreactor in soil remediation[J]. Environmental Engineering,2022,40(4):174-181.
    [9]
    LAUNEN L A, BUGGS V H, EASTEP M E, et al. Bioremediation of polyaromatic hydrocarbon-contaminated sediments in aerated bioslurry reactors[J]. Bioremediation Journal,2002,6(2):125-141. doi: 10.1080/10588330208951209
    [10]
    BOLYEN E, RIDEOUT J R, DILLON M R, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2[J]. Nature Biotechnology,2019,37(8):852-857. doi: 10.1038/s41587-019-0209-9
    [11]
    CALLAHAN B J, McMURDIE P J, ROSEN M J, et al. DADA2: high-resolution sample inference from Illumina amplicon data[J]. Nature Methods,2016,13(7):581-583. doi: 10.1038/nmeth.3869
    [12]
    GRICE E A, KONG H H, CONLAN S, et al. Topographical and temporal diversity of the human skin microbiome[J]. Science,2009,324:1190-1192. doi: 10.1126/science.1171700
    [13]
    侯晓鹏, 李春华, 叶春, 等.不同电子受体作用下微生物降解多环芳烃研究进展[J]. 环境工程技术学报,2016,6(1):78-84.

    HOU X P, LI C H, YE C, et al. Research progress of biodegradation of polycyclic aromatic hydrocarbons with amendment of different electron acceptors[J]. Journal of Environmental Engineering Technology,2016,6(1):78-84.
    [14]
    VERA A, WILSON F P, CUPPLES A M. Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites[J]. Applied Microbiology and Biotechnology,2022,106(2):835-853. doi: 10.1007/s00253-021-11756-3
    [15]
    LI Y T, ZHENG B P, YANG Y H, et al. Soil microbial ecological effect of shale gas oil-based drilling cuttings pyrolysis residue used as soil covering material[J]. Journal of Hazardous Materials,2022,436:129231. doi: 10.1016/j.jhazmat.2022.129231
    [16]
    DOSANI M, PLATT J. Pilot-scale demonstration of a slurry-phase biological reactor for creosote-contaminated soil: applications analysis report[R]. Cincinnati: IT Corp, 1993.
    [17]
    YU C C, CHANG T C, LIAO C S, et al. A comparison of the microbial community and functional genes present in free-living and soil particle-attached bacteria from an aerobic bioslurry reactor treating high-molecular-weight PAHs[J]. Sustainability,2019,11(4):1088. doi: 10.3390/su11041088
    [18]
    SMITH E, THAVAMANI P, RAMADASS K, et al. Remediation trials for hydrocarbon-contaminated soils in arid environments: evaluation of bioslurry and biopiling techniques[J]. International Biodeterioration & Biodegradation,2015,101:56-65.
    [19]
    AHMED F, FAKHRUDDIN A. A review on environmental contamination of petroleum hydrocarbons and its biodegradation[J]. International Journal of Environmental Sciences & Natural Resources,2018,11(3):1-7.
    [20]
    YAN Z S, ZHANG Y, WU H F, et al. Isolation and characterization of a bacterial strain Hydrogenophaga sp. PYR1 for anaerobic pyrene and benzo[a] pyrene biodegradation[J]. RSC Advances,2017,7(74):46690-46698. doi: 10.1039/C7RA09274A
    [21]
    王荔, 张腾飞, 杨苏才, 等.焦化厂PAHs污染土壤中微生物群落多样性特征[J]. 环境工程技术学报,2021,11(4):720-726.

    WANG L, ZHANG T F, YANG S C, et al. Characteristics of microbial community diversity in PAHs contaminated soil of a coking plant[J]. Journal of Environmental Engineering Technology,2021,11(4):720-726.
    [22]
    SWATI, MONI K, POOJA G, et al. Evaluation of a biosurfactant producing bacterial strain Pseudomonas sp. ISTPY2 for efficient pyrene degradation and landfill soil bioremediation through soil microcosm and proteomic studies[J]. Bioresource Technology Reports,2020,12:100607. doi: 10.1016/j.biteb.2020.100607
    [23]
    LI L, SHEN X W, ZHAO C C, et al. Biodegradation of dibenzothiophene by efficient Pseudomonas sp. LKY-5 with the production of a biosurfactant[J]. Ecotoxicology and Environmental Safety,2019,176:50-57. doi: 10.1016/j.ecoenv.2019.03.070
    [24]
    KUMARI S, MANGWANI N, DAS S. Synergistic effect of quorum sensing genes in biofilm development and PAHs degradation by a marine bacterium[J]. Bioengineered,2016,7(3):205-211. doi: 10.1080/21655979.2016.1174797
    [25]
    STOLZ A. Molecular characteristics of xenobiotic-degrading sphingomonads[J]. Applied Microbiology and Biotechnology,2009,81(5):793-811. doi: 10.1007/s00253-008-1752-3
    [26]
    OBAYORI O S, SALAM L B. Degradation of polycyclic aromatic hydrocarbons: role of plasmids[J]. Scientific Research and Essays,2010,5:4093-4106.
    [27]
    KERTESZ M A, KAWASAKI A, STOLZ A. Aerobic hydrocarbon-degrading alphaproteobacteria: sphingomonadales[C]//MCGENITY T. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Cham: Springer, 2019: 105-124.
    [28]
    PINYAKONG O, HABE H, OMORI T. The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs)[J]. The Journal of General and Applied Microbiology,2003,49(1):1-19. doi: 10.2323/jgam.49.1
    [29]
    LAFORTUNE I, JUTEAU P, DÉZIEL E, et al. Bacterial diversity of a consortium degrading high-molecular-weight polycyclic aromatic hydrocarbons in a two-liquid phase biosystem[J]. Microbial Ecology,2009,57(3):455-468. doi: 10.1007/s00248-008-9417-4
    [30]
    许华夏, 宋玉芳, 井欣, 等.生物泥浆反应器中微生物数量变化与PAHs降解[J]. 应用与环境生物学报,2000,6(5):452-456.

    XU H X, SONG Y F, JING X, et al. The variation of amount of microbes and its relations with the degradation of pahs in the bioslurry reactor[J]. Chinese Journal of Applied and Environmental Biology,2000,6(5):452-456. □
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article Views(153) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return