Volume 13 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
NIU Z M,CAO X R,PENG G W,et al.Adsorption efficiency and mechanism of uranium in seepage of uranium tailing pond using biochar prepared from oxytetracycline fermentation residues at high temperature[J].Journal of Environmental Engineering Technology,2023,13(6):2221-2228 doi: 10.12153/j.issn.1674-991X.20230133
Citation: NIU Z M,CAO X R,PENG G W,et al.Adsorption efficiency and mechanism of uranium in seepage of uranium tailing pond using biochar prepared from oxytetracycline fermentation residues at high temperature[J].Journal of Environmental Engineering Technology,2023,13(6):2221-2228 doi: 10.12153/j.issn.1674-991X.20230133

Adsorption efficiency and mechanism of uranium in seepage of uranium tailing pond using biochar prepared from oxytetracycline fermentation residues at high temperature

doi: 10.12153/j.issn.1674-991X.20230133
  • Received Date: 2023-02-21
    Available Online: 2023-11-24
  • Oxytetracycline fermentation residues (OFR) were used to prepare biochar under different temperatures (from 300 to 900 ℃ with an interval of 100 ℃) for uranium adsorption and removal in the wastewater, and the adsorption efficiency and mechanism were studied. The results showed that as the rise of temperature, the surface function groups of OFR biochar, prepared at different temperatures, were decreased gradually and the crystal morphology of Ca was transformed from CaC2O4 (300-400 ℃) to CaCO3 (500-700 ℃) and CaO (800-900 ℃), which leaded to the changes of removal efficiency. When the temperature was raised to 800-900 ℃, the biochar adsorption achieved more than 98% removal efficiency of uranium in seepage of a tailing pond in the South of China in 10 min. Further studies found that more than 98% of uranium could be removed under the condition of wide range of pH (4.0-9.0) and initial uranium concentration (0.8-3.0 mg/L), and the supernatant after treated was much lower than the limit of discharge standard stipulated by radiation protection and radiation environment protection in uranium mining and metallurgy. Therefore, OFR biochar prepared at high temperature showed a good application prospect in in-situ treatment of uranium tailings drainage.

     

  • loading
  • [1]
    章求才, 娄亚龙, 刘永, 等.某铀尾矿库渗水中铀的化学形态和影响因素模拟分析[J]. 工业安全与环保,2018,44(6):1-4. doi: 10.3969/j.issn.1001-425X.2018.06.001

    ZHANG Q C, LOU Y L, LIU Y, et al. Chemical species and influence factors analysis of uranium in the seepage of one uranium tailings pond[J]. Industrial Safety and Environmental Protection,2018,44(6):1-4. doi: 10.3969/j.issn.1001-425X.2018.06.001
    [2]
    BERGMANN M, SOBRAL O, PRATAS J, et al. Uranium toxicity to aquatic invertebrates: a laboratory assay[J]. Environmental Pollution,2018,239:359-366. doi: 10.1016/j.envpol.2018.04.007
    [3]
    王宏洋, 王旭, 陈海燕, 等.尾矿库环境风险管控相关政策分析及建议[J]. 环境科学研究,2023,36(5):1052-1060.

    WANG H Y, WANG X, CHEN H Y, et al. Analysis and suggestions of environmental risk control strategy for tailings ponds[J]. Research of Environmental Sciences,2023,36(5):1052-1060.
    [4]
    TROYER L D, MAILLOT F, WANG Z M, et al. Effect of phosphate on U(Ⅵ) sorption to montmorillonite: ternary complexation and precipitation barriers[J]. Geochimica et Cosmochimica Acta,2016,175:86-99. doi: 10.1016/j.gca.2015.11.029
    [5]
    ZOU Y D, LIU Y, WANG X X, et al. Glycerol-modified binary layered double hydroxide nanocomposites for uranium immobilization via extended X-ray absorption fine structure technique and density functional theory calculation[J]. ACS Sustainable Chemistry & Engineering,2017,5(4):3583-3595.
    [6]
    REGMI P, MOSCOSO J L G, KUMAR S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management,2012,109:61-69.
    [7]
    INYANG M, GAO B, PULLAMMANAPPALLIL P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology,2010,101(22):8868-8872. doi: 10.1016/j.biortech.2010.06.088
    [8]
    ALAM M S, GORMAN-LEWIS D, CHEN N, et al. Mechanisms of the removal of U(Ⅵ) from aqueous solution using biochar: a combined spectroscopic and modeling approach[J]. Environmental Science & Technology,2018,52(22):13057-13067.
    [9]
    LI L, YANG M, LU Q, et al. Oxygen-rich biochar from torrefaction: a versatile adsorbent for water pollution control[J]. Bioresource Technology,2019,294:122142. doi: 10.1016/j.biortech.2019.122142
    [10]
    DAI L C, LI L, ZHU W K, et al. Post-engineering of biochar via thermal air treatment for highly efficient promotion of uranium(Ⅵ) adsorption[J]. Bioresource Technology,2020,298:122576. doi: 10.1016/j.biortech.2019.122576
    [11]
    ZHANG Z B, CAO X H, LIANG P, et al. Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization[J]. Journal of Radioanalytical and Nuclear Chemistry,2013,295(2):1201-1208. doi: 10.1007/s10967-012-2017-2
    [12]
    KUMAR S, LOGANATHAN V A, GUPTA R B, et al. An assessment of U(Ⅵ) removal from groundwater using biochar produced from hydrothermal carbonization[J]. Journal of Environmental Management,2011,92(10):2504-2512. doi: 10.1016/j.jenvman.2011.05.013
    [13]
    SUN Y B, YANG S B, CHEN Y E, et al. Adsorption and desorption of U(Ⅵ) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environmental Science & Technology,2015,49(7):4255-4262.
    [14]
    CAO X D, MA L N, GAO B, et al. Dairy-manure derived biochar effectively sorbs lead and atrazine[J]. Environmental Science & Technology,2009,43(9):3285-3291.
    [15]
    ALAM M S, COSSIO M, ROBINSON L, et al. Removal of organic acids from water using biochar and petroleum coke[J]. Environmental Technology & Innovation,2016,6:141-151.
    [16]
    UCHIMIYA M, CHANG S, KLASSON K T. Screening biochars for heavy metal retention in soil: role of oxygen functional groups[J]. Journal of Hazardous Materials,2011,190(1/2/3):432-441.
    [17]
    JIN J, LI S W, PENG X Q, et al. HNO3 modified biochars for uranium (Ⅵ) removal from aqueous solution[J]. Bioresource Technology,2018,256:247-253. doi: 10.1016/j.biortech.2018.02.022
    [18]
    SUN Y B, WU Z Y, WANG X X, et al. Macroscopic and microscopic investigation of U(Ⅵ) and Eu(Ⅲ) adsorption on carbonaceous nanofibers[J]. Environmental Science & Technology,2016,50(8):4459-4467.
    [19]
    王娟, 郭亚丹, 曾华, 等.羟基磷灰石复合材料对地下水中铀吸附去除研究进展[J]. 有色金属(冶炼部分),2021(8):37-45.

    WANG J, GUO Y D, ZENG H, et al. Progress of hydroxyapatite composites for adsorption and removal of uranium from groundwater[J]. Nonferrous Metals (Extractive Metallurgy),2021(8):37-45.
    [20]
    秦坤, 李佳乐, 王章鸿, 等.富Ca香菇菌渣基生物炭对含磷废水处理性能的研究[J]. 化工学报,2022,73(11):5263-5274.

    QIN K, LI J L, WANG Z H, et al. Biochars derived from Ca-rich mushroom residue for phosphorus-containing wastewater treatment[J]. CIESC Journal,2022,73(11):5263-5274.
    [21]
    王胜丹. 负载钙生物炭回收水中磷酸盐及其产物对铀(Ⅵ)固定的特性研究[D]. 广州: 广州大学, 2018.
    [22]
    YING G G, HE L Y, YING A J, et al. China must reduce its antibiotic use[J]. Environmental Science & Technology,2017,51(3):1072-1073.
    [23]
    姚光远, 刘玉强, 刘景财, 等.我国医药制造业危险废物产生特性及污染防治分析[J]. 环境工程技术学报,2021,11(6):1258-1265.

    YAO G Y, LIU Y Q, LIU J C, et al. Research on the generation properties and pollution control of pharmaceutical manufacturing industry in China[J]. Journal of Environmental Engineering Technology,2021,11(6):1258-1265.
    [24]
    彭燕, 陈迪云, 陈南, 等.磷酸钙对铀矿下游水系沉积物中铀的钝化效果[J]. 环境工程,2021,39(4):13-19. doi: 10.13205/j.hjgc.202104003

    PENG Y, CHEN D Y, CHEN N, et al. Passivation effect of calcium phosphate on uranium in sediments in downstream waters of a uranium mine[J]. Environmental Engineering,2021,39(4):13-19. doi: 10.13205/j.hjgc.202104003
    [25]
    林升, 付映文, 那兵, 等.磷酸氢钙原位矿化铀酰离子性能及机制研究[J]. 东华理工大学学报(自然科学版),2022,45(3):275-281.

    LIN S, FU Y W, NA B, et al. Property and mechanism of in situ mineralization of uranyl ions with calcium hydrogen phosphate[J]. Journal of East China University of Technology (Natural Science),2022,45(3):275-281.
    [26]
    环境保护部. 水质 65种元素的测定 电感耦合等离子体质谱法: HJ 700—2014[S]. 北京: 中国环境科学出版社, 2014.
    [27]
    卫生部, 国家标准化管理委员会. 生活饮用水标准检验方法 无机非金属指标: GB/T 5750.5—2006[S]. 北京: 中国标准出版社, 2007.
    [28]
    王晖, 郭霄, 马翔, 等.模拟酸雨对耐冬山茶生理生态学特征的影响[J]. 青岛农业大学学报(自然科学版),2022,39(1):43-50.

    WANG H, GUO X, MA X, et al. Effects of simulated acid rain on the ecophysiological characteristics of Camellia japonica (NaiDong)[J]. Journal of Qingdao Agricultural University (Natural Science),2022,39(1):43-50.
    [29]
    LU Q, DAI L C, LI L, et al. Valorization of oxytetracycline fermentation residue through torrefaction into a versatile and recyclable adsorbent for water pollution control[J]. Journal of Environmental Chemical Engineering,2021,9(4):105397. doi: 10.1016/j.jece.2021.105397
    [30]
    CHEN B L, CHEN Z M. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures[J]. Chemosphere,2009,76(1):127-133. doi: 10.1016/j.chemosphere.2009.02.004
    [31]
    生态环境部, 国家市场监督管理总局. 铀矿冶辐射防护和辐射环境保护规定: GB 23727—2020[S]. 北京: 中国环境科学出版社, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article Views(98) PDF Downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return