Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
YANG Z Y,SUN Q H,SHEN P,et al.Analysis of cost and potential of energy-conservation technologies in iron and steel industry: a case study of the Yangtze River Delta region[J].Journal of Environmental Engineering Technology,2023,13(3):1249-1258 doi: 10.12153/j.issn.1674-991X.20221235
Citation: YANG Z Y,SUN Q H,SHEN P,et al.Analysis of cost and potential of energy-conservation technologies in iron and steel industry: a case study of the Yangtze River Delta region[J].Journal of Environmental Engineering Technology,2023,13(3):1249-1258 doi: 10.12153/j.issn.1674-991X.20221235

Analysis of cost and potential of energy-conservation technologies in iron and steel industry: a case study of the Yangtze River Delta region

doi: 10.12153/j.issn.1674-991X.20221235
  • Received Date: 2022-12-08
  • Accepted Date: 2023-03-27
  • Rev Recd Date: 2023-01-31
  • As a typical resource and energy intensive industry, energy saving and emission reduction is the effective green and low-carbon transformation and development path of the iron and steel industry. Energy-conservation technologies are vital to improve energy efficiency, reduce carbon emissions and decrease air pollution in the iron and steel industry. The Conservation Supply Curve method was used to evaluate the techonolies’ energy-conservation cost of the iron and steel industry in the Yangtze River Delta region. And the energy conservation potential realized by the technologies in the region in 2030 was evaluated. The results showed that 28 energy-conservation technologies in the iron and steel industry were expected to save 875.74 PJ of energy in 2030, which was about 34% of the total energy consumption of the iron and steel industry in the Yangtze River Delta in 2020. When different income items were considered, the energy-conservation cost of technologies was different; when no income was considered, the energy-conservation cost of technologies was the highest; when the co-benefit was taken into account, the energy-conservation cost was reduced to a lower level. The discount rate, the trading price of greenhouse gases or pollutants and other factors would have an impact on the energy-conservation cost of the technologies. The higher the discount rate, the higher the capital cost, and the higher the energy-conservation cost of the technologies. A rise in the price of greenhouse gases or pollutants would increase the benefit of energy conservation and thus reduce the cost of energy conservation of the technologies.

     

  • loading
  • [1]
    冶金工业规划研究院. 中国钢铁工业节能低碳发展报告(2020)[EB/OL]. (2020-12-24)[2022-12-07]. http://www.mpi1972.com/xwzx/yndt/202012/t20201224_94730.html.
    [2]
    任明, 徐向阳.京津冀地区钢铁行业节能潜力及成本分析[J]. 生态经济,2018,34(10):91-97.

    REN M, XU X Y. Cost and energy saving potential of iron and steel industry in Jing-Jin-Ji Region[J]. Ecological Economy,2018,34(10):91-97.
    [3]
    国家发展和改革委员会. 关于严格能效约束推动重点领域节能降碳的若干意见[A/OL]. (2021-10-18)[2022-12-07]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202110/t20211021_1300583.html?code=&state=123.
    [4]
    工业和信息化部. 关于印发工业能效提升行动计划的通知[A/OL]. (2022-06-29)[2022-12-07]. https://www.miit.gov.cn/jgsj/jns/nyjy/art/2022/art_c43d89e0b209438bad7f7baa28606273.html.
    [5]
    工业和信息化部. 关于促进钢铁工业高质量发展的指导意见[A/OL]. (2022-05-20)[2022-12-07]. https://www.ndrc.gov.cn/xwdt/ztzl/cjgyjjpwzz/bmgzqk/202205/t20220520_1324965.html?code=&state=123.
    [6]
    易文杰, 李庄, 罗竹燕, 等.水泥行业环境影响评价低碳技术选择与应用[J]. 环境工程技术学报,2022,12(6):1905-1914. doi: 10.12153/j.issn.1674-991X.20220590

    YI W J, LI Z, LUO Z Y, et al. Selection and application of low carbon technologies in environmental impact assessment of cement industry[J]. Journal of Environmental Engineering Technology,2022,12(6):1905-1914. doi: 10.12153/j.issn.1674-991X.20220590
    [7]
    李庄, 许友静, 易文杰, 等.钢铁企业低碳技术评价选择与应用[J]. 环境科学研究,2022,35(6):1538-1546.

    LI Z, XU Y J, YI W J, et al. Evaluation, selection and application of low-carbon technology in iron and steel enterprises[J]. Research of Environmental Sciences,2022,35(6):1538-1546.
    [8]
    MEIER A K. Supply curves of conserved energy[D]. Berkeley: University of Berkeley, 1982.
    [9]
    WORRELL E, PRICE L, MARTIN N. Energy efficiency and carbon dioxide emissions reduction opportunities in the US iron and steel sector[J]. Energy, 2001, 26(5): 513-536.
    [10]
    ZHANG Q, ZHAO X Y, LU H Y, et al. Waste energy recovery and energy efficiency improvement in China's iron and steel industry[J]. Applied Energy, 2017, 191:502-520.
    [11]
    LI Y, ZHU L. Cost of energy saving and CO2 emissions reduction in China's iron and steel sector[J]. Applied Energy,2014,130:603-616. doi: 10.1016/j.apenergy.2014.04.014
    [12]
    毛显强, 曾桉, 刘胜强, 等.钢铁行业技术减排措施硫、氮、碳协同控制效应评价研究[J]. 环境科学学报,2012,32(5):1253-1260.

    MAO X Q, ZENG A, LIU S Q, et al. Assessment of SO2, NOx and CO2 co-control effects by technological reduction measures in iron & steel industry[J]. Acta Scientiae Circumstantiae,2012,32(5):1253-1260.
    [13]
    刘胜强, 毛显强, 胡涛, 等.中国钢铁行业大气污染与温室气体协同控制路径研究[J]. 环境科学与技术,2012,35(7):168-174. doi: 10.3969/j.issn.1003-6504.2012.07.037

    LIU S Q, MAO X Q, HU T, et al. Roadmap of Co-control of air pollutants and GHGs in iron and steel industry in China[J]. Environmental Science & Technology,2012,35(7):168-174. doi: 10.3969/j.issn.1003-6504.2012.07.037
    [14]
    马丁, 陈文颖.中国钢铁行业技术减排的协同效益分析[J]. 中国环境科学,2015,35(1):298-303.

    MA D, CHEN W Y. Analysis of the co-benefit of emission reduction measures in China's iron and steel industry[J]. China Environmental Science,2015,35(1):298-303.
    [15]
    许立松, 张琦.中国重点区域钢铁产业能耗和CO2排放趋势分析[J]. 中国冶金,2021,31(9):36-45.

    XU L S, ZHANG Q. Analysis on energy consumption and CO2 emission trend of China's iron and steel industry in key regions[J]. China Metallurgy,2021,31(9):36-45.
    [16]
    李小敏, 许亚宣, 于华通. 长三角地区钢铁行业发展现状[C]//2017中国环境科学学会科学与技术年会论文集(第一卷). 厦门, 2017: 210-218.
    [17]
    国家统计局. 年度数据[DB/OL]. [2022-12-07]. https://data.stats.gov.cn/.
    [18]
    工业和信息化部. 钢铁产能置换办法[EB/OL]. (2021-04-17)[2022-12-07]. http://www.gov.cn/zhengce/zhengceku/2021-05/07/content_5605092.html.
    [19]
    LIU X W, YUAN Z W, XU Y, et al. Greening cement in China: a cost-effective roadmap[J]. Applied Energy,2017,189:233-244. doi: 10.1016/j.apenergy.2016.12.057
    [20]
    郑佳佳, 孙星, 张牧吟, 等.温室气体减排与大气污染控制的协同效应: 国内外研究综述[J]. 生态经济,2015,31(11):133-137. doi: 10.3969/j.issn.1671-4407.2015.11.030

    ZHENG J J, SUN X, ZHANG M Y, et al. Review of researches on the synergistic effect of GHGs mitigation and air pollution control at home and abroad[J]. Ecological Economy,2015,31(11):133-137. doi: 10.3969/j.issn.1671-4407.2015.11.030
    [21]
    浙江省经济和信息化厅. 浙江省钢铁行业产能置换实施细则(征求意见稿)[EB/OL]. [2020-10-20]. http://jxt.zj.gov.cn/art/2022/10/20/art_1582900_24161.html.
    [22]
    江苏省钢铁工业协会. 钢铁行业产能置换实施办法. [EB/OL]. (2022-07-15)[2022-12-07]. http://www.jsgt.org.cn/index.php/Home/Index/art/a_id/9404/c_id/49.html.
    [23]
    安徽省经济和信息化厅. 关于做好钢铁行业产能置换工作的通知[EB/OL]. ( 2021-06-01)[2022-12-07]. http://jx.ah.gov.cn/sy/wjgg/145818891.html.
    [24]
    李新创. 发展电炉炼钢短流程是必然趋势, 但不能一蹴而就[EB/OL]. (2020-12-23)[2022-12-07]. https://static.nfapp.southcn.com/content/202111/16/c5943948.html.
    [25]
    中国钢铁工业年鉴编辑委员会. 中国钢铁工业年鉴2020[R/OL]. 北京: 冶金工业经济发展研究中心, 2020[2022-12-07].https://data.cnki.net/yearBook/single?id=N2021040157.
    [26]
    国家发展和改革委员会. 国家重点节能低碳技术推广目录(节能部分)[EB/OL]. (2018-03-02)[2022-12-07]. https://www.ndrc.gov.cn/fggz/hjyzy/jnhnx/201803/t20180302_1134163.html.
    [27]
    生态环境部. 国家清洁生产先进技术目录(2022)[EB/OL]. (2022-11-28)[2022-12-07] https://www.mee.gov.cn/ywdt/gsgg/gongshi/wqgs_1/202211/t20221128_1006273.shtml.
    [28]
    国家发展和改革委员会. 绿色技术推广目录(2020年)[EB/OL]. (2020-12-31)[2022-12-07] http://www.gov.cn/zhengce/zhengceku/2021-01/08/content_5578253.htm.
    [29]
    河北省生态环境厅. 河北省低碳技术推广目录(2021年)[EB/OL]. (2021-12-24)[2022-12-07] http://hbepb.hebei.gov.cn/hbhjt/zwgk/fdzdgknr/zdlyxxgk/ydqhbh/duiwaihezuo/101640070964806.html.
    [30]
    工业和信息化部. 国家工业节能技术应用指南与案例(2021年版)[EB/OL]. (2021-12-22)[2022-12-07].https://www.miit.gov.cn/jgsj/jns/xydt/art/2021/art_839f53e003984d92b281d40e04c537d7.html.
    [31]
    工业和信息化部. 国家工业节能技术应用指南与案例(2022年版)[EB/OL]. (2022-12-26)[2023-1-18].https://www.miit.gov.cn/jgsj/jns/nyjy/art/2022/art_a7e7d9f2443a45b38065653e3c139641.html.
    [32]
    Lawrence Berkeley National Laboratory. Assessment of energy efficiency improvement and CO2 emission reduction potentials in the iron and steel industry in China[EB/OL]. (2012-05-01)[2022-12-07].https://www.osti.gov/servlets/purl/1212090.
    [33]
    戴彦德, 胡秀莲. 中国二氧化碳减排技术潜力和成本研究[M]. 北京: 中国环境出版社, 2013: 215-250.
    [34]
    生态环境部. 关于做好2023—2025年发电行业企业温室气体排放报告管理有关工作的通知[EB/OL].(2023-02-07)[2023-2-16]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk06/202302/t20230207_1015569.html.
    [35]
    GAINS Model Release 4.0. 2 East Asia emission factors-all sources[DB/OL]. [2022-12-07] https://gains.iiasa.ac.at/gains/emissions.EAN/index.menu?page=610.
    [36]
    史君杰, 何培育, 熊超.我国钢铁行业清洁能源发展现状及建议[J]. 中国国情国力,2022(4):41-45.

    SHI J J, HE P Y, XIONG C. Present situation and suggestions of clean energy development in China's iron and steel industry[J]. China National Conditions and Strength,2022(4):41-45.
    [37]
    国家发展和改革委员会. 电力发展"十三五"规划[EB/OL]. (2016-12-22)[2022-12-07]. https://www.gov.cn/xinwen/2016-12/22/5151549/files/696e98c57ecd49c289968ae2d77ed583.
    [38]
    CCTD钢铁网. 动力煤与焦炭价格[EB/OL]. (2022-7-19)[2022-12-07]. https://www.cctd.com.cn/.
    [39]
    江苏省发展改革委员会. 江苏电网销售电价表[EB/OL]. (2019-04-23)[2022-12-07]. http://www.js.sgcc.com.cn/html/main/col2816/2019-05/07/20190507110253782381121_1.html.
    [40]
    碳交易网. 碳排放网第一个履约周期成交均价[EB/OL]. (2022-01-27)[2022-12-07]. http://www.tanjiaoyi.com/article-36014-1.html.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(8)

    Article Metrics

    Article Views(234) PDF Downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return