Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
FU Y M,QIAN L Y,XU C.Evaluation method of gasoline particulate filter regeneration interval mileage in a low-temperature environment[J].Journal of Environmental Engineering Technology,2023,13(3):955-964 doi: 10.12153/j.issn.1674-991X.20220654
Citation: FU Y M,QIAN L Y,XU C.Evaluation method of gasoline particulate filter regeneration interval mileage in a low-temperature environment[J].Journal of Environmental Engineering Technology,2023,13(3):955-964 doi: 10.12153/j.issn.1674-991X.20220654

Evaluation method of gasoline particulate filter regeneration interval mileage in a low-temperature environment

doi: 10.12153/j.issn.1674-991X.20220654
  • Received Date: 2022-06-24
  • Accepted Date: 2023-02-06
  • Rev Recd Date: 2023-02-03
  • The gasoline particulate filter (GPF) regeneration interval mileage in a low-temperature environment was studied based on a temperature correction method for GPF soot load estimation.The GPF soot regeneration action rate was measured by the engine dyno test, and the activation energy of the regeneration reaction was obtained by the logarithm method and the line fitting method. It was shown that the activation energy of oxygen and soot was 81.6-91.4 kJ/mol, and that of carbon dioxide and soot was 159.2-218.9 kJ/mol. The activation energy was then used to calculate the correction coefficients for the soot regeneration action rate in variant environment temperatures. The accumulated velocity of the soots in the cold start stage of the test vehicle was measured, and the correction coefficients for soot emission in a low-temperature environment were acquired. Based on the type I test of CHINA 6 for light-duty vehicle emission, GPF active regeneration interval mileage in a low-temperature environment was simulated by applying the temperature correction coefficient of soot emissions and regeneration rate. Compared with GPF soot accumulation data from test vehicles driving on road in cold region, the simulation result had enough precision to predict GPF soot load accumulation rate for vehicle usage under different working conditions in cold region. Both the simulation and test results indicated that GPF soot accumulation rate was easily affected by low temperature when the vehicle running at low speed.

     

  • loading
  • [1]
    李红, 彭良, 毕方, 等.我国PM2.5与臭氧污染协同控制策略研究[J]. 环境科学研究,2019,32(10):1763-1778.

    LI H, PENG L, BI F, et al. Strategy of coordinated control of PM2.5 and ozone in China[J]. Research of Environmental Sciences,2019,32(10):1763-1778.
    [2]
    李建峰, 王思儒, 郑冬勇, 等.超细颗粒物的污染行为与毒性效应研究[J]. 广东化工,2018,45(7):127-128.

    LI J F, WANG S R, ZHENG D Y, et al. Research on the pollution behavior and toxic effects of ultrafine particulate matter[J]. Guangdong Chemical Industry,2018,45(7):127-128.
    [3]
    YANG J C, ROTH P, DURBIN T D, et al. Gasoline particulate filters as an effective tool to reduce particulate and polycyclic aromatic hydrocarbon emissions from gasoline direct injection (GDI) vehicles: a case study with two GDI vehicles[J]. Environmental Science & Technology,2018,52(5):3275-3284.
    [4]
    王军方, 尹航, 王宏丽, 等.轻型汽油车国六排放标准可行性研究[J]. 环境工程技术学报,2017,7(6):661-665. doi: 10.3969/j.issn.1674-991X.2017.06.091

    WANG J F, YIN H, WANG H L, et al. Study on probability of compliance with China 6 standard for the emission from light duty gasoline vehicles[J]. Journal of Environmental Engineering Technology,2017,7(6):661-665. doi: 10.3969/j.issn.1674-991X.2017.06.091
    [5]
    龚少南. 汽油机颗粒捕集器的建模与再生控制[D]. 合肥: 合肥工业大学, 2020.
    [6]
    范明哲, 张宾, ALEXANDER S, 等.汽油机GPF炭载量模型和再生策略的试验研究[J]. 内燃机与动力装置,2018,35(6):1-10.

    FAN M Z, ZHANG B, ALEXANDER S, et al. Experimental study on soot model and regeneration strategy of gasoline particulate filter[J]. Internal Combustion Engine & Powerplant,2018,35(6):1-10.
    [7]
    环境保护部, 国家质量监督检验检疫总局. 轻型汽车污染物排放限值及测量方法: GB 18352.6—2016[S]. 北京: 中国环境科学出版社, 2020.
    [8]
    RODRIGUEZ F. Investigations on the pollutant emissions of gasoline direct injection engines during cold-start[R]. Cambridge: Massachusetts Institute of Technology, 2016.
    [9]
    BOGARRA M, HERREROS J M, TSOLAKIS A, et al. Gasoline direct injection engine soot oxidation: fundamentals and determination of kinetic parameters[J]. Combustion and Flame,2018,190:177-187. doi: 10.1016/j.combustflame.2017.11.027
    [10]
    姚塽, 汪侃, 张许扬, 等.汽油机颗粒捕集器再生平衡状态的仿真研究[J]. 内燃机工程,2021,42(3):93-99. doi: 10.13949/j.cnki.nrjgc.2021.03.014

    YAO S, WANG K, ZHANG X Y, et al. Simulation study on the regeneration equilibrium state of gasoline particulate filters[J]. Chinese Internal Combustion Engine Engineering,2021,42(3):93-99. doi: 10.13949/j.cnki.nrjgc.2021.03.014
    [11]
    BOGER T, ROSE D, NICOLIN P, et al. Oxidation of soot (Printex® U) in particulate filters operated on gasoline engines[J]. Emission Control Science and Technology,2015,1(1):49-63. doi: 10.1007/s40825-015-0011-1
    [12]
    PER N, DOMINIK R, FLORIAN K, et al. Modeling of the soot oxidation in gasoline particulate filters[J]. SAE International Journal of Engines, 2015, 8(3): 1253-1260.
    [13]
    LUO Y Q, ZHU L, FANG J H, et al. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel[J]. Applied Thermal Engineering,2015,89:647-655. doi: 10.1016/j.applthermaleng.2015.06.060
    [14]
    WANG C M, XU H M, HERREROS J M, et al. Fuel effect on particulate matter composition and soot oxidation in a direct-injection spark ignition (DISI) engine[J]. Energy & Fuels,2014,28(3):2003-2012.
    [15]
    WANG-HANSEN C, ERICSSON P, LUNDBERG B, et al. Characterization of particulate matter from direct injected gasoline engines[J]. Topics in Catalysis, 2013, 56(1/2/3/4/5/6/7/8): 446-451.
    [16]
    STANMORE B R, BRILHAC J F, GILOT P. The oxidation of soot: a review of experiments, mechanisms and models[J]. Carbon,2001,39(15):2247-2268. doi: 10.1016/S0008-6223(01)00109-9
    [17]
    DHRUVANG R, SIMONA O, ZORAN F, et al. Experimental investigation of soot accumulation and regeneration in a catalyzed gasoline particulate filter utilizing particulate quantification and gas speciation measurements[C]//ASME 2018 Internal Combustion Engine Fall Technical Conference. San Diego, 2018.
    [18]
    南征, 李楠, 刘海涛, 等.不同载体汽油机颗粒捕集器再生性能试验研究[J]. 内燃机与动力装置,2021,38(6):29-35. doi: 10.19471/j.cnki.1673-6397.2021.06.005

    NAN Z, LI N, LIU H T, et al. Experimental study on regeneration performance of gasoline particulate filter with different carriers[J]. Internal Combustion Engine & Powerplant,2021,38(6):29-35. doi: 10.19471/j.cnki.1673-6397.2021.06.005
    [19]
    崔亚男.汽油机颗粒捕集器台架标定方法研究[J]. 小型内燃机与车辆技术,2020,49(1):73-78.

    CUI Y N. Research on gasoline engine particulate filter bench calibration[J]. Small Internal Combustion Engine and Vehicle Technique,2020,49(1):73-78.
    [20]
    李树宇.汽油颗粒捕集器(GPF)累碳及再生状态研究[J]. 柴油机设计与制造,2021,27(3):33-36.

    LI S Y. Study on Carbon accumulation and regeneration status of gasoline particle catcher[J]. Design and Manufacture of Diesel Engine,2021,27(3):33-36.
    [21]
    陈龙, 李儒龙, 许瑞, 等. GPF再生消耗模型标定方法研究[C]//2020中国汽车工程学会年会论文集(3). 北京: 机械工业出版社, 2021: 838-842
    [22]
    邹秀清. 不同环境下的汽油机GPF服务站再生研究[C]//2020中国汽车工程学会年会论文集(2). 北京: 机械工业出版社, 2021: 743-747
    [23]
    气象局. 中国气象年鉴2019[M]. 北京: 中国气象出版社, 2020: 556-557.
    [24]
    YEHLIU K, VANDER WAL R L, ARMAS O, et al. Impact of fuel formulation on the nanostructure and reactivity of diesel soot[J]. Combustion and Flame,2012,159(12):3597-3606. doi: 10.1016/j.combustflame.2012.07.004
    [25]
    SEONG H, LEE K, CHOI S. Effects of engine operating parameters on morphology of particulates from a gasoline direct injection (GDI) engine[C]//SAE Technical Paper Series. Warrendale: SAE International, 2013.
    [26]
    KAPTEIJN F, MEIJER R, MOULIJN J A, et al. On why do different carbons show different gasification rates: a transient isotopic CO2 gasification study[J]. Carbon,1994,32(7):1223-1231. doi: 10.1016/0008-6223(94)90106-6
    [27]
    ARUNACHALAM H, POZZATO G, HOFFMAN M A, et al. Modeling the thermal and soot oxidation dynamics inside a ceria-coated gasoline particulate filter[J]. Control Engineering Practice,2020,94:104199. doi: 10.1016/j.conengprac.2019.104199
    [28]
    朱庆功, 刘俊女, 赵笑春, 等.北京市轻型汽油车蒸发排放总量评估[J]. 中国环境科学,2022,42(3):1066-1072. doi: 10.19674/j.cnki.issn1000-6923.2022.0070

    ZHU Q G, LIU J N, ZHAO X C, et al. Estimation of light-duty vehicles total evaporative emissions in Beijing[J]. China Environmental Science,2022,42(3):1066-1072. doi: 10.19674/j.cnki.issn1000-6923.2022.0070
    [29]
    王军方, 丁焰, 王爱娟, 等.北京市机动车行驶工况研究[J]. 环境工程技术学报,2012,2(3):240-246.

    WANG J F, DING Y, WANG A J, et al. Study of vehicle driving cycle modes on road in Beijing[J]. Journal of Environmental Engineering Technology,2012,2(3):240-246.
    [30]
    MOSES-DEBUSK M, STOREY J M E, EIBL M A, et al. Nonuniform oxidation behavior of loaded gasoline particulate filters[J]. Emission Control Science and Technology,2020,6(3):301-314. □ doi: 10.1007/s40825-020-00166-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(9)

    Article Metrics

    Article Views(180) PDF Downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return