Volume 13 Issue 3
May  2023
Turn off MathJax
Article Contents
XUE X,MAO Y P,ZHANG H.Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J].Journal of Environmental Engineering Technology,2023,13(3):1179-1186 doi: 10.12153/j.issn.1674-991X.20220391
Citation: XUE X,MAO Y P,ZHANG H.Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region[J].Journal of Environmental Engineering Technology,2023,13(3):1179-1186 doi: 10.12153/j.issn.1674-991X.20220391

Transport fluxes of nitrogen, phosphorus, cadmium and arsenic at farmland plot scale in the typical areas of Pearl River Delta region

doi: 10.12153/j.issn.1674-991X.20220391
  • Received Date: 2022-04-26
  • The transport of nitrogen, phosphorus, cadmium and arsenic is the main factor affecting agricultural production as well as a significant non-point source of pollution of farmland. Taking the experimental farmland of the Foshan Institute of Agricultural Science and Technology (FIAST) in the Pearl River Delta as a typical research area, and based on the soil apparent balance model, a soil apparent balance model of nitrogen, phosphorus, cadmium and arsenic was constructed at the farmland plot scale, to analyze the transport structure and balance of nitrogen, phosphorus, cadmium and arsenic in the soil. The results showed that fertilization was the main input of the four elements in the study area, but the main outputs were different. The main output of nitrogen and phosphorus was crop enrichment, accounting for 57.5% and 39.0%, respectively, whilst the main outputs of cadmium and arsenic were surface runoff and crop enrichment, accounting for 66.7% and 10.7%, respectively. The enrichment was observed for all four elements in the study area to different degrees. On the plot scale, the balance of nitrogen and phosphorus was in surplus, while cadmium and arsenic were in deficit, with their intensity being 37.40, 8.88, −1.35 and −20.50 kg/(hm2·a), respectively. Nitrogen and phosphorus were within the local soil environmental safety thresholds. The analysis of cadmium and arsenic enrichment in five types of vegetables showed that the enrichment coefficient of arsenic was greater than 70.0% in all the types of vegetables, while the enrichment of cadmium was only found in pepper leaves, with a coefficient of 57.5%. Therefore, more attention should be paid to the effective utilization of fertilizer input and the monitoring of heavy metals in irrigation water, crops and surface runoff to ensure regional food security and water quality.

     

  • loading
  • [1]
    朱永官, 陈保冬, 林爱军, 等.珠江三角洲地区土壤重金属污染控制与修复研究的若干思考[J]. 环境科学学报,2005,25(12):1575-1579.

    ZHU Y G, CHEN B D, LIN A J, et al. Heavy metal contamination in Pearl River Delta-Status and research priorities[J]. Acta Scientiae Circumstantiae,2005,25(12):1575-1579.
    [2]
    徐志青, 刘雪瑜, 肖书虎, 等.珠江三角洲地区水环境承载力评价及障碍因素研究[J]. 环境工程技术学报,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007

    XU Z Q, LIU X Y, XIAO S H, et al. Evaluation and obstacle factors study of water environmental carrying capacity in the Pearl River Delta[J]. Journal of Environmental Engineering Technology,2019,9(1):44-52. doi: 10.3969/j.issn.1674-991X.2019.01.007
    [3]
    纪冬丽, 孟凡生, 薛浩, 等.国内外土壤砷污染及其修复技术现状与展望[J]. 环境工程技术学报,2016,6(1):90-99.

    JI D L, MENG F S, XUE H, et al. Situation and prospect of soil arsenic pollution and its remediation techniques at home and abroad[J]. Journal of Environmental Engineering Technology,2016,6(1):90-99.
    [4]
    HONG B, SWANEY D P, HOWARTH R W. Estimating net anthropogenic nitrogen inputs to US watersheds: comparison of methodologies[J]. Environmental Science & Technology,2013,47(10):5199-5207.
    [5]
    徐一芃, 黄益宗, 张利田, 等.镉砷污染土壤修复技术的文献计量分析[J]. 环境工程学报,2020,14(10):2882-2894.

    XU Y P, HUANG Y Z, ZHANG L T, et al. Bibliometric analysis of remediation techniques for cadmium and arsenic contaminated soil[J]. Chinese Journal of Environmental Engineering,2020,14(10):2882-2894.
    [6]
    梁新强, 顾欣欣, 李华, 等.土壤氮磷平衡在评价区域氮磷损失中的应用[J]. 环境科学与技术,2007,30(3):50-51.

    LIANG X Q, GU X X, LI H, et al. N and P balances in soil: a tool for assessing agricultural N and P losses in regional scale[J]. Environmental Science & Technology,2007,30(3):50-51.
    [7]
    WATSON C A, ATKINSON D. Using nitrogen budgets to indicate nitrogen use efficiency and losses from whole farm systems: a comparison of three methodological approaches[J]. Nutrient Cycling in Agroecosystems,1999,53:259-267. doi: 10.1023/A:1009793120577
    [8]
    BOUWMAN A F, van DRECHT G, van der HOEK K W. Global and regional surface nitrogen balances in intensive agricultural production systems for the period 1970-2030[J]. Pedosphere,2005,15(2):137-155.
    [9]
    Organization for Economic Cooperation and Development (OECD). Environmental indicators for agriculture: volume 3. methods and results[R]. Paris: Organization for Economic Cooperation and Development, 2001.
    [10]
    Organization for Economic Cooperation and Development (OECD). OECD national soil surface nitrogen balances: explanatory notes[R]. Paris: Organization for Economic Cooperation and Development, 2001.
    [11]
    PARRIS K. Agricultural nutrient balances as agri-environmental indicators: an OECD perspective[J]. Environmental Pollution,1998,102(1):219-225. doi: 10.1016/S0269-7491(98)80036-5
    [12]
    PRASAD V K, BADARINATH K V S, YONEMURA S, et al. Regional inventory of soil surface nitrogen balances in Indian agriculture (2000-2001)[J]. Journal of Environmental Management,2004,73(3):209-218. doi: 10.1016/j.jenvman.2004.06.013
    [13]
    杨阳, 何飞飞, 邓纲, 等.氮肥对工业大麻产量和土壤表观氮素平衡的影响[J]. 云南农业大学学报(自然科学),2019,34(5):833-837.

    YANG Y, HE F F, DENG G, et al. Effect of nitrogen fertilization on the yield and apparent soil nitrogen balance of hemp (Cannabis sativa L. )[J]. Journal of Yunnan Agricultural University (Natural Science),2019,34(5):833-837.
    [14]
    何庆利. 不同种植体系的土壤表观磷平衡及磷的有效性评价[D]. 重庆: 西南大学, 2020.
    [15]
    李金城, 杜展鹏, 严长安, 等.高原山地城市农田氮、磷表观平衡演变特征: 以昆明市为例[J]. 环境科学学报,2018,38(12):4823-4830.

    LI J C, DU Z P, YAN C A, et al. Evolution of cropland nitrogen and phosphorus apparent balance in plateau region: a case study of Kunming City[J]. Acta Scientiae Circumstantiae,2018,38(12):4823-4830.
    [16]
    赵晓琳. 胡家山小流域农田土壤氮磷收支研究[D]. 武汉: 华中农业大学, 2015.
    [17]
    ZHANG H, SHAN B Q. Historical distribution and partitioning of phosphorus in sediments in an agricultural watershed in the Yangtze-Huaihe region, China[J]. Environmental Science & Technology,2008,42(7):2328-2333.
    [18]
    MAO Y P, ZHANG H, TANG W Z, et al. Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008-2016)[J]. Journal of Environmental Management,2021,282:111952. doi: 10.1016/j.jenvman.2021.111952
    [19]
    王瑶瑶, 郝毅, 张洪, 等.珠三角地区大米中的镉砷污染现状及治理措施[J]. 中国农学通报,2019,35(12):63-72. doi: 10.11924/j.issn.1000-6850.casb18010016

    WANG Y Y, HAO Y, ZHANG H, et al. Cadmium and arsenic pollution in rice in the Pearl River Delta and the countermeasures[J]. Chinese Agricultural Science Bulletin,2019,35(12):63-72. doi: 10.11924/j.issn.1000-6850.casb18010016
    [20]
    张永利. 珠三角农田土壤环境镉砷钝化效果研究[D]. 兰州: 兰州大学, 2019.
    [21]
    马瑾, 潘根兴, 万洪富, 等.珠江三角洲典型区域土壤重金属污染探查研究[J]. 土壤通报,2004,35(5):636-638.

    MA J, PAN G X, WAN H F, et al. Investigation on heavy metal pollution in a typical area of the Pearl River Delta[J]. Chinese Journal of Soil Science,2004,35(5):636-638.
    [22]
    姜国辉, 周雪梅, 李玉清, 等.不同浓度镉水灌溉对土壤及水稻品质的影响[J]. 水土保持学报,2012,26(5):264-267.

    JIANG G H, ZHOU X M, LI Y Q, et al. Influence from irrigation of different cadmium water density on soil and rice quality[J]. Journal of Soil and Water Conservation,2012,26(5):264-267.
    [23]
    李勇, 赵志忠, 周永章.珠江三角洲肝癌高发区人发重金属元素来源及其影响因子分析[J]. 广东微量元素科学,2013,20(2):1-10.

    LI Y, ZHAO Z Z, ZHOU Y Z. Identification of heavy metals sources in scalp hair and associated influence factors in liver cancer's high incidence area in Pearl River Delta, China[J]. Guangdong Trace Elements Science,2013,20(2):1-10.
    [24]
    李东瑶. 珠江三角洲不同环境介质中重金属富集特征及其来源[D]. 北京: 中国地质大学(北京), 2021.
    [25]
    吴丹. 佛山市农业表层土壤重金属含量空间分布特征及其环境磁学响应研究[D]. 北京: 中国科学院大学, 2014.
    [26]
    谷倩, 张琢, 张丽, 等.砷污染场地土壤的稳定化技术工程应用研究[J]. 环境工程技术学报,2021,11(4):734-739.

    GU Q, ZHANG Z, ZHANG L, et al. Research on engineering application of stabilization technology for arsenic contaminated site soil[J]. Journal of Environmental Engineering Technology,2021,11(4):734-739.
    [27]
    国家环境保护局. 土壤环境监测技术规范: HJ/T 166—2004[S]. 北京: 中国标准出版社, 2004. .
    [28]
    国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [29]
    刘钦普.中国化肥施用强度及环境安全阈值时空变化[J]. 农业工程学报,2017,33(6):214-221.

    LIU Q P. Spatio-temporal changes of fertilization intensity and environmental safety threshold in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(6):214-221.
    [30]
    中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
    [31]
    陈玉梅, 周根娣, 胡洁, 等.土壤重金属复合污染对茄果类蔬菜的影响研究[J]. 杭州师范大学学报(自然科学版),2016,15(5):495-501.

    CHEN Y M, ZHOU G D, HU J, et al. Influence of combined heavy metal pollution on solanaceous vegetables[J]. Journal of Hangzhou Normal University (Natural Science Edition),2016,15(5):495-501.
    [32]
    ZHAO L P, MA Y B, LIANG G Q, et al. Phosphorus efficacy in four Chinese long-term experiments with different soil properties and climate characteristics[J]. Communications in Soil Science and Plant Analysis,2009,40(19/20):3121-3138.
    [33]
    LAMBRECHTS T, de BRAEKELEER C, FAUTSCH V, et al. Can vegetative filter strips efficiently trap trace elements during water erosion events: a flume experiment with contaminated sediments[J]. Ecological Engineering,2014,68:60-64. doi: 10.1016/j.ecoleng.2014.03.092
    [34]
    袁鹏, 刘瑞霞, 俞洁, 等.《浙江省河流生态缓冲带划定与生态修复技术指南(试行)》解读[J]. 环境工程技术学报,2021,11(1):1-5. doi: 10.12153/j.issn.1674-991X.20210003

    YUAN P, LIU R X, YU J, et al. Interpretation of Technical Guidelines for Delineation and Ecological Restoration of Riparian Buffers of Rivers in Zhejiang Province (Trial)[J]. Journal of Environmental Engineering Technology,2021,11(1):1-5. doi: 10.12153/j.issn.1674-991X.20210003
    [35]
    GENE S M, HOEKSTRA P F, HANNAM C, et al. The role of vegetated buffers in agriculture and their regulation across Canada and the United States[J]. Journal of Environmental Management,2019,243:12-21.
    [36]
    MA L Q, KOMAR K M, TU C, et al. A fern that hyperaccumulates arsenic[J]. Nature,2001,409(6820):579. doi: 10.1038/35054664
    [37]
    YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance)[J]. Plant and Soil,2004,259(1/2):181-189. doi: 10.1023/B:PLSO.0000020956.24027.f2
    [38]
    CHEN B, MA X X, LIU G Q, et al. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape[J]. Environmental Science and Pollution Research International,2015,22(22):17625-17635. doi: 10.1007/s11356-015-4933-5
    [39]
    谭可夫, 涂鹏飞, 杨洋, 等.烟草—红叶甜菜轮作对镉污染农田的修复潜力试验[J]. 环境工程技术学报,2020,10(3):440-448. doi: 10.12153/j.issn.1674-991X.20190167

    TAN K F, TU P F, YANG Y, et al. Phytoextraction of cadmium contaminated agricultural soil by tobacco and swiss chard rotation systems[J]. Journal of Environmental Engineering Technology,2020,10(3):440-448. ◇ doi: 10.12153/j.issn.1674-991X.20190167
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article Views(205) PDF Downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return