Volume 13 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
WU L L,WU R S,GUO Y T,et al.Research on key building parameters affecting the vapor intrusion of VOCs in contaminated sites[J].Journal of Environmental Engineering Technology,2023,13(2):881-888 doi: 10.12153/j.issn.1674-991X.20220081
Citation: WU L L,WU R S,GUO Y T,et al.Research on key building parameters affecting the vapor intrusion of VOCs in contaminated sites[J].Journal of Environmental Engineering Technology,2023,13(2):881-888 doi: 10.12153/j.issn.1674-991X.20220081

Research on key building parameters affecting the vapor intrusion of VOCs in contaminated sites

doi: 10.12153/j.issn.1674-991X.20220081
  • Received Date: 2022-01-24
  • Inhalation exposure caused by vapor intrusion (VI) with the migration of volatile organic compounds (VOCs) from soil and groundwater into the indoor environment is essential to the human health risk assessment of VOCs in contaminated sites. Building parameters are important factors that affect the VOCs migration from the contaminated soil to indoor air and change the indoor concentration for population exposure. The technical documents of building parameters for exposure risk assessment in developed countries such as the UK and the US were elaborated systematically, and the determination methods of three key parameters affecting VI, namely, air exchange rate, building volume and foundation crack, were summarized. Furthermore, the research development of building parameters in China’s exposure risk assessment was illustrated, and the idea of improving building parameters and their technical methods were put forward, from the aspects of collecting cross-sectoral basic data and constructing regional localization parameters, to provide technical support for the refined exposure risks assessment in VOCs contaminated sites in China.

     

  • loading
  • [1]
    尧一骏.我国污染场地治理与风险评估[J]. 环境保护,2016,44(20):25-28. doi: 10.14026/j.cnki.0253-9705.2016.20.005

    YAO Y J. Risk assessment and remediation of soil contamination in China[J]. Environmental Protection,2016,44(20):25-28. doi: 10.14026/j.cnki.0253-9705.2016.20.005
    [2]
    杨宾, 李慧颖, 伍斌, 等.污染场地中挥发性有机污染工程修复技术及应用[J]. 环境工程技术学报,2013,3(1):78-84. doi: 10.3969/j.issn.1674-991X.2013.01.014

    YANG B, LI H Y, WU B, et al. Engineering remediation techniques and its application for volatile organic compounds-contaminated sites[J]. Journal of Environmental Engineering Technology,2013,3(1):78-84. doi: 10.3969/j.issn.1674-991X.2013.01.014
    [3]
    National Research Council. Risk assessment in the Federal Government[M]. Washington DC: National Academies Press, 1983.
    [4]
    MA J, MCHUGH T, BECKLEY L, et al. Vapor intrusion investigations and decision-making: a critical review[J]. Environmental Science & Technology,2020,54(12):7050-7069.
    [5]
    YAO Y J, SHEN R, PENNELL K G, et al. A review of vapor intrusion models[J]. Environmental Science & Technology,2013,47(6):2457-2470.
    [6]
    郭晓欣, 张超艳, 张瑞环, 等.MIL-101高效吸附测定土壤气中三氯乙烯及健康风险评估[J]. 环境科学研究,2018,31(6):1129-1137. doi: 10.13198/j.issn.1001-6929.2018.01.04

    GUO X X, ZHANG C Y, ZHANG R H, et al. Determination of trichloroethylene in soil gas by MIL-101 adsorption and health risk assessment[J]. Research of Environmental Sciences,2018,31(6):1129-1137. doi: 10.13198/j.issn.1001-6929.2018.01.04
    [7]
    龙雨, 杨兵, 秦普丰, 等.土壤包气带含水率对氯代烃垂向迁移影响的模拟研究[J]. 环境科学研究,2017,30(8):1255-1261. doi: 10.13198/j.issn.1001-6929.2017.02.57

    LONG Y, YANG B, QIN P F, et al. Effects of moisture content on vertical migration of chlorinated hydrocarbons in soil unsaturated zone[J]. Research of Environmental Sciences,2017,30(8):1255-1261. doi: 10.13198/j.issn.1001-6929.2017.02.57
    [8]
    SHEN R, SUUBERG E M. Impacts of changes of indoor air pressure and air exchange rate in vapor intrusion scenarios[J]. Building and Environment,2016,96:178-187. doi: 10.1016/j.buildenv.2015.11.015
    [9]
    SONG S, SCHNORR B A, RAMACCIOTTI F C. Quantifying the influence of stack and wind effects on vapor intrusion[J]. Human and Ecological Risk Assessment:an International Journal,2014,20(5):1345-1358. doi: 10.1080/10807039.2013.858530
    [10]
    MCHUGH T E, BECKLEY L, BAILEY D, et al. Evaluation of vapor intrusion using controlled building pressure[J]. Environmental Science & Technology,2012,46(9):4792-4799.
    [11]
    GUO Y M, HOLTON C, LUO H, et al. Identification of alternative vapor intrusion pathways using controlled pressure testing, soil gas monitoring, and screening model calculations[J]. Environmental Science & Technology,2015,49(22):13472-13482.
    [12]
    REICHMAN R, ROGHANI M, WILLETT E J, et al. Air exchange rates and alternative vapor entry pathways to inform vapor intrusion exposure risk assessments[J]. Reviews on Environmental Health,2017,32(1/2):27-33.
    [13]
    US EPA. OSWER technical guide for assessing and mitigating the vapor intrusion pathway from subsurface vapor sources to indoor air[R]. Washington DC: Environmental Protection Agency, 2015.
    [14]
    US EPA. Exposure factors handbook-2011 Edition, EPA/600/R-090/052F[R]. Washington DC: Office of Research and Development, 2011.
    [15]
    American Society of Heating, Refrigerating and Air Conditioning Engineers. Handbook of fundamentals[M]. Atlanta, GA: ASHRAE Inc. , 2013.
    [16]
    BREEN M S, SCHULTZ B D, SOHN M D, et al. A review of air exchange rate models for air pollution exposure assessments[J]. Journal of Exposure Science & Environmental Epidemiology,2014,24(6):555-563.
    [17]
    KOONTZ M D, RECTOR H E. Estimation of distributions for residential air exchange rates: final report[R]. Washington DC: Office of Pollution Prevention and Toxics, US Environmental Protection Agency, 1995.
    [18]
    BREEN M S, BREEN M, WILLIAMS R W, et al. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina[J]. Environmental Science & Technology,2010,44(24):9349-9356.
    [19]
    BAXTER L K, STALLINGS C, SMITH L, et al. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling[J]. Journal of Exposure Science & Environmental Epidemiology,2017,27(2):227-234.
    [20]
    HOLTON C, LUO H, DAHLEN P, et al. Temporal variability of indoor air concentrations under natural conditions in a house overlying a dilute chlorinated solvent groundwater plume[J]. Environmental Science & Technology,2013,47(23):13347-13354.
    [21]
    JOHNSTON J E, GIBSON J M. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study[J]. Journal of Exposure Science & Environmental Epidemiology,2014,24(6):564-571.
    [22]
    SHIRAZI E, PENNELL K G. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains[J]. Environmental Science Processes & Impacts,2017,19(12):1594-1607.
    [23]
    LOUREIRO C D O. Simulation of the steady-state transport of radon from soil into houses with basements under constant negative pressure[D/OL]. DOI: 10.2172/5486695.
    [24]
    LOUREIRO C O, ABRIOLA L M, MARTIN J E, et al. Three-dimensional simulation of radon transport into houses with basements under constant negative pressure[J]. Environmental Science & Technology,1990,24(9):1338-1348.
    [25]
    NAZAROFF W W, LEWIS S R, DOYLE S M, et al. Experiments on pollutant transport from soil into residential basements by pressure-driven airflow[J]. Environmental Science & Technology,1987,21(5):459-466.
    [26]
    YAO Y J, PENNELL K G, SUUBERG E M. Simulating the effect of slab features on vapor intrusion of crack entry[J]. Building and Environment,2013,59:417-425. doi: 10.1016/j.buildenv.2012.09.007
    [27]
    生态环境部. 建设用地土壤污染风险评估技术导则: HJ 25.3—2019[S]. 北京: 中国环境出版集团, 2019.
    [28]
    US Environmental Protection Agency. Update for Chapter 19 of the exposure factors handbook-building characteristics[R]. Washington DC: National Center for Environmental Assessment Office of Research and Development, 2018.
    [29]
    TURK B H, BROWN J T, GEISLING-SOBOTKA K, et al. Indoor air quality and ventilation measurements in 38 Pacific Northwest commercial buildings: final report: volume 1, measurement results and interpretation[R]. Berkeley CA: Lawrence Berkeley National Laboratory, 1987.
    [30]
    HE C R, MORAWSKA L, GILBERT D. Particle deposition rates in residential houses[J]. Atmospheric Environment,2005,39(21):3891-3899. doi: 10.1016/j.atmosenv.2005.03.016
    [31]
    BIGGS K L, BENNIE I D, MICHELL D. Air infiltration rates in some Australian houses[J]. Australian Institute of Building Papers,1987,2:49-61.
    [32]
    HARRISON V G. Natural ventilation and thermal insulation studies of West Australian State Housing Commission houses[D]. Perth, Australia: University of Western Australia, 1985.
    [33]
    FERRARI L. Indoor air pollution workshop paper: control of indoor air quality in domestic and public buildings[J]. Journal of Occupational Health and Safety, 1991, 7(2): 163-167.
    [34]
    GUO H, MORAWSKA L, HE C, et al. Impact of ventilation scenario on air exchange rates and on indoor particle number concentrations in an air-conditioned classroom[J]. Atmospheric Environment,2008,42(4):757-768. doi: 10.1016/j.atmosenv.2007.09.070
    [35]
    BIGGS K L, BENNIE I D and, MICHELL D. Air permeability of some Australian houses[J]. Building Environment, 1986, 21(2): 89-96.
    [36]
    Environment Agency. Review of building parameters for development of a soil vapour intrusion model[R]. Bristol: Environment Agency, 2005.
    [37]
    AIST Research Center for CRM. Japanese exposure factors handbook[R]. Kokyo: National Institute of Advanced Industrial Science and Technology, 2007.
    [38]
    三原, 邦彰, 吉野, 等.実験及びCFD解析による簡易換気量測定法の基礎的研究[J]. 环境工学,2004:865-866.
    [39]
    US Department of Energy. US EPA analysis of survey data: residential energy consumption survey (RECS)[R]. Washington DC: Department of Energy, Energy Information Administration, 2008.
    [40]
    US Department of Energy. Residential energy consumption survey (RECS): technical documentation summary[R]. Washington DC: US Department of Energy, Energy Information Administration, 2013.
    [41]
    US Department of Energy. US EPA analysis of survey data. commercial buildings energy consumption survey (CBECS). Form EIA-871A[R]. Washington DC: US Department of Energy, Energy Information Administration, 2008.
    [42]
    Australian Bureau of Statistics. Environmental issues: energy use and conservation[R]. Canberra: Australian Bureau of Statistics, 2008.
    [43]
    Australian Bureau of Statistics. ABS data derived from building activity survey[R]. Canberra: Australian Bureau of Statistic, 2005.
    [44]
    Australian Bureau of Statistics. Feature article: houses in South Australia[R]. Canberra: Australian Bureau of Statistics, 2010.
    [45]
    Building Code of Australia. Australian Building Codes Board (ABCB)[S/OL]. [2022-01-20].https://www.abcb.gov.au/.
    [46]
    Department of Communities and Local Government. English House Condition Survey[R]. London: Department of Communities and Local Government, 2001.
    [47]
    BROWN F E, RICKABY P A, BRUHNS H R, et al. Surveys of nondomestic buildings in four English towns[J]. Environment and Planning B:Planning and Design,2000,27(1):11-24. doi: 10.1068/b2571
    [48]
    POUT C, MACKENZIE F, BETTLE R. Non-domestic building energy fact file[R]. London: CRC, 1998.
    [49]
    NAZAROFF W W, FEUSTEL H, NERO A V, et al. Radon transport into a detached one-story house with a basement[J]. Atmospheric Environment (1967),1985,19(1):31-46. doi: 10.1016/0004-6981(85)90134-9
    [50]
    FIGLEY D A, SNODGRASS L J. The effect of basement insulation on the depth of frost penetration adjacent to insulated foundations[J]. Journal of Thermal Insulation,1984,7(4):266-294. doi: 10.1177/109719638400700407
    [51]
    American Society for Testing and Material. ASTM E1739-95 (e approved 2010) standard guide for risk-based corrective action applied at petroleum release sites[S]. West Conshohocken: ASTM international, 2010.
    [52]
    Environment Agency. Updated technical background to the CLEA Model[R]. Bristol: Environment Agency, 2008.
    [53]
    环境保护部. 中国人群暴露参数手册(成人卷)[M]. 北京: 中国环境出版社, 2013.
    [54]
    张斌, 邹卉, 肖杰, 等.RAG-C和RBCA模型中场地特征参数的差异及其启示[J]. 环境工程,2015,33(9):130-133. doi: 10.13205/j.hjgc.201509029

    ZHANG B, ZOU H, XIAO J, et al. Comparison of site-specific parameters in rag-c and rbca model and the implication for China[J]. Environmental Engineering,2015,33(9):130-133. doi: 10.13205/j.hjgc.201509029
    [55]
    住房和城乡建设部.民用建筑供暖通风与空气调节设计规范: GB50736—2012 [S]. 北京: 中国建筑工业出版社, 2012.
    [56]
    住房和城乡建设部. 车库建筑设计规范: JGJ 100—2015[S]. 北京: 中国建筑工业出版社, 2015.
    [57]
    建设部. 人民防空地下室设计规范: GB 50038—2005[S/OL]. [2022-01-20]. http://www.doc88.com/p-4029177550526.html.
    [58]
    HOU J, SUN Y X, CHEN Q Y, et al. Air change rates in urban Chinese bedrooms[J]. Indoor Air,2019,29(5):828-839. doi: 10.1111/ina.12582
    [59]
    DENG T X, SHEN X, CHENG X J, et al. Investigation of window-opening behaviour and indoor air quality in dwellings situated in the temperate zone in China[J]. Indoor and Built Environment,2021,30(7):938-956. doi: 10.1177/1420326X20924746
    [60]
    YOU Y, NIU C, ZHOU J, et al. Measurement of air exchange rates in different indoor environments using continuous CO2 sensors[J]. Journal of Environmental Sciences,2012,24(4):657-664. doi: 10.1016/S1001-0742(11)60812-7
    [61]
    CHENG P L. Natural ventilation rate distribution in dwellings in China’s 4 major cities[D]. Beijng: Tsinghua University, 2018.
    [62]
    住房和城乡建设部. 民用建筑设计统一标准: GB 50352—2019[S]. 北京: 中国建筑工业出版社, 2019.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(11)

    Article Metrics

    Article Views(197) PDF Downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return