Volume 13 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LI P S,DUAN W J,WU Q T,et al.Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag[J].Journal of Environmental Engineering Technology,2023,13(1):332-339 doi: 10.12153/j.issn.1674-991X.20210834
Citation: LI P S,DUAN W J,WU Q T,et al.Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag[J].Journal of Environmental Engineering Technology,2023,13(1):332-339 doi: 10.12153/j.issn.1674-991X.20210834

Comprehensive evaluation of a mass-energy coupling treatment system for blast furnace slag

doi: 10.12153/j.issn.1674-991X.20210834
  • Received Date: 2021-12-16
  • A novel mass-energy coupling treatment system for blast furnace slag was proposed, which realized efficient recovery of waste heat in slag and high value-added utilization of slag components. The methods of life cycle assessment and life cycle cost were adopted to calculate the environmental impact and economic cost of the system. The resource and energy consumption included were also calculated. Main sources in terms of environmental impact, economic cost and resource and energy consumption of the system were traced through the identification of main contributors. The key elements to system optimization were determined through the comprehensive performance evaluation and sensitivity analysis. Besides, the environmental, energy and economic benefits of the system were analyzed based on its characteristics. The results showed that: 1) The environmental impact of the system was mainly global warming (with a contribution rate of 47.68%), the economic cost was mainly internal cost (with a contribution rate of 91.89%), and the resource consumption was mainly non-energy resources (with a contribution rate of 98.57%). 2) The key unit to system optimization was pretreatment and the key input was HCl. 3) For each ton of slag treated, the net CO2 emission was −6 098.68 kg, the net energy consumption was −682.68 MJ and the economic cost was 2 078.24 yuan after a full consideration of system characteristics.

     

  • loading
  • [1]
    王丽丽, 张玉柱, 龙跃, 等.气淬粒化高炉熔渣液膜流动特性数值模拟[J]. 过程工程学报,2020,20(8):887-895. doi: 10.12034/j.issn.1009-606X.219307

    WANG L L, ZHANG Y Z, LONG Y, et al. Numerical investigation of film flow characteristics of molten slag in air quenching dry granulation process[J]. The Chinese Journal of Process Engineering,2020,20(8):887-895. doi: 10.12034/j.issn.1009-606X.219307
    [2]
    张立生, 李慧, 张汉鑫, 等.高炉渣的综合利用及展望[J]. 热加工工艺,2018,47(19):20-24. doi: 10.14158/j.cnki.1001-3814.2018.19.005

    ZHANG L S, LI H, ZHANG H X, et al. Comprehensive utilization and prospect of blast furnace slag[J]. Hot Working Technology,2018,47(19):20-24. doi: 10.14158/j.cnki.1001-3814.2018.19.005
    [3]
    LI Y, LIU Y, GONG X Z, et al. Environmental impact analysis of blast furnace slag applied to ordinary Portland cement production[J]. Journal of Cleaner Production,2016,120:221-230. doi: 10.1016/j.jclepro.2015.12.071
    [4]
    康月, 刘超, 张玉柱.高炉渣作为气淬喷吹原料的可行性分析[J]. 中国冶金,2021,31(5):127-131. doi: 10.13228/j.boyuan.issn1006-9356.20200556

    KANG Y, LIU C, ZHANG Y Z. Feasibility analysis of blast furnace slag as gas quenching raw material[J]. China Metallurgy,2021,31(5):127-131. doi: 10.13228/j.boyuan.issn1006-9356.20200556
    [5]
    万新宇, 严定鎏, 高建军, 等.高炉渣干法轮式粒化半工业试验[J]. 中国冶金,2020,30(5):83-87. doi: 10.13228/j.boyuan.issn1006-9356.20190503

    WAN X Y, YAN D L, GAO J J, et al. Semi-industrial test on dry wheeled granulation for blast furnace slag[J]. China Metallurgy,2020,30(5):83-87. doi: 10.13228/j.boyuan.issn1006-9356.20190503
    [6]
    MARUOKA N, MIZUOCHI T, PURWANTO H, et al. Feasibility study for recovering waste heat in the steelmaking industry using a chemical recuperator[J]. ISIJ International,2004,44(2):257-262. doi: 10.2355/isijinternational.44.257
    [7]
    DUAN W J, YU Q B, WU T W, et al. Experimental study on steam gasification of coal using molten blast furnace slag as heat carrier for producing hydrogen-enriched syngas[J]. Energy Conversion and Management,2016,117:513-519. doi: 10.1016/j.enconman.2016.03.051
    [8]
    MA J, SHI Y, ZHANG H X, et al. Crystallization of CaO-MgO-Al2O3-SiO2 glass ceramic derived from blast furnace slag via one-step method[J]. Materials Chemistry and Physics,2021,261:124213. doi: 10.1016/j.matchemphys.2020.124213
    [9]
    蒲华俊, 曾淋林, 徐晓东, 等.无需热处理高炉渣微晶玻璃的制备与表征[J]. 人工晶体学报,2018,47(8):1547-1553. doi: 10.3969/j.issn.1000-985X.2018.08.008

    PU H J, ZENG L L, XU X D, et al. Preparation and characterization of blast furnace slag glass ceramics without heat treatment[J]. Journal of Synthetic Crystals,2018,47(8):1547-1553. doi: 10.3969/j.issn.1000-985X.2018.08.008
    [10]
    ZHANG Y J, HE P Y, YANG M Y, et al. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment[J]. Catalysis Today,2020,355:325-332. doi: 10.1016/j.cattod.2019.02.003
    [11]
    ZHANG Y B, LIU J C, SU Z J, et al. Utilizing blast furnace slags (BFS) to prepare high-temperature composite phase change materials (C-PCMs)[J]. Construction and Building Materials,2018,177:184-191. doi: 10.1016/j.conbuildmat.2018.05.110
    [12]
    MONTANARI T, FINOCCHIO E, SALVATORE E, et al. CO2 separation and landfill biogas upgrading: a comparison of 4A and 13X zeolite adsorbents[J]. Energy,2011,36(1):314-319. doi: 10.1016/j.energy.2010.10.038
    [13]
    BHATTA L K G, SUBRAMANYAM S, CHENGALA M D, et al. Progress in hydrotalcite like compounds and metal-based oxides for CO2 capture: a review[J]. Journal of Cleaner Production,2015,103:171-196. doi: 10.1016/j.jclepro.2014.12.059
    [14]
    余红.可再生能源发电对PM10和PM2.5减排的贡献核算[J]. 环境工程技术学报,2014,4(4):321-325. doi: 10.3969/j.issn.1674-991X.2014.04.052

    YU H. Emission reduction accounting for PM10 and PM2.5 by renewable energy power generation[J]. Journal of Environmental Engineering Technology,2014,4(4):321-325. doi: 10.3969/j.issn.1674-991X.2014.04.052
    [15]
    陈伟强, 万红艳, 武娟妮, 等.铝的生命周期评价与铝工业的环境影响[J]. 轻金属,2009(5):3-10. doi: 10.13662/j.cnki.qjs.2009.05.015

    CHEN W Q, WAN H Y, WU J N, et al. Life cycle assessment of aluminium and the environmental impacts of aluminium industry[J]. Light Metals,2009(5):3-10. doi: 10.13662/j.cnki.qjs.2009.05.015
    [16]
    袁晓梅, 王斌.生命周期评价在硫铁矿掺烧亚铁渣制硫酸中的应用研究[J]. 绿色科技,2012(6):132-134. doi: 10.3969/j.issn.1674-9944.2012.06.066
    [17]
    THANNIMALAY L, YUSOFF S, ZAWAWI N Z. Life cycle assessment of sodium hydroxide[J]. Australian Journal of Basic and Applied Sciences,2013,7(2):421-431.
    [18]
    魏进超, 李俊杰, 康建刚.基于生命周期评价的烧结烟气净化技术比较[J]. 环境工程技术学报,2017,7(4):424-432. doi: 10.3969/j.issn.1674-991X.2017.04.058

    WEI J C, LI J J, KANG J G. Comparison on different sintering flue gas purification technologies based on life cycle assessment[J]. Journal of Environmental Engineering Technology,2017,7(4):424-432. doi: 10.3969/j.issn.1674-991X.2017.04.058
    [19]
    申宸昊, 邓义祥, 张嘉戌, 等.我国塑料污染生命周期管理分析与建议[J]. 环境科学研究,2021,34(8):2026-2034. doi: 10.13198/j.issn.1001-6929.2021.04.14

    SHEN C H, DENG Y X, ZHANG J X, et al. Improve life cycle management of plastic pollution in China[J]. Research of Environmental Sciences,2021,34(8):2026-2034. doi: 10.13198/j.issn.1001-6929.2021.04.14
    [20]
    DUAN W J, YU Q B, WANG Z M, et al. Life cycle and economic assessment of multi-stage blast furnace slag waste heat recovery system[J]. Energy,2018,142:486-495. doi: 10.1016/j.energy.2017.10.048
    [21]
    马铭婧, 郗凤明, 王娇月, 等.高炉渣CO2矿化利用技术的生命周期碳排放与成本评价[J]. 生态学杂志,2020,39(6):2097-2105.

    MA M J, XI F M, WANG J Y, et al. Life cycle carbon emissions and cost assessment of CO2 mineralization and utilization technology by means of blast furnace slag[J]. Chinese Journal of Ecology,2020,39(6):2097-2105.
    [22]
    LI J J, CHENG W J. Comparison of life-cycle energy consumption, carbon emissions and economic costs of coal to ethanol and bioethanol[J]. Applied Energy,2020,277:115574. doi: 10.1016/j.apenergy.2020.115574
    [23]
    VAHIDI E, ZHAO F. Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction[J]. Journal of Environmental Management,2017,203:255-263.
    [24]
    丁宁, 高峰, 王志宏, 等.原铝与再生铝生产的能耗和温室气体排放对比[J]. 中国有色金属学报,2012,22(10):2908-2915. doi: 10.19476/j.ysxb.1004.0609.2012.10.030

    DING N, GAO F, WANG Z H, et al. Comparative analysis of primary aluminum and recycled aluminum on energy consumption and greenhouse gas emission[J]. The Chinese Journal of Nonferrous Metals,2012,22(10):2908-2915. ⊕ doi: 10.19476/j.ysxb.1004.0609.2012.10.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(6)

    Article Metrics

    Article Views(194) PDF Downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return