Volume 11 Issue 3
May  2021
Turn off MathJax
Article Contents
HOU Xushan, YUAN Jing, YE Bibi, WU Yue, LI Guohong, WU Jingdong, CHU Zhaosheng. Effects of in situ physical elution treatments of sediment on the germination and growth of Vallisneria natans (Lour.) Hara[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 514-522. doi: 10.12153/j.issn.1674-991X.20210030
Citation: HOU Xushan, YUAN Jing, YE Bibi, WU Yue, LI Guohong, WU Jingdong, CHU Zhaosheng. Effects of in situ physical elution treatments of sediment on the germination and growth of Vallisneria natans (Lour.) Hara[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 514-522. doi: 10.12153/j.issn.1674-991X.20210030

Effects of in situ physical elution treatments of sediment on the germination and growth of Vallisneria natans (Lour.) Hara

doi: 10.12153/j.issn.1674-991X.20210030
More Information
  • Corresponding author: CHU Zhaosheng E-mail: chuzs@craes.org.cn
  • Received Date: 2021-01-31
  • Publish Date: 2021-05-20
  • In situ physical elution treatments are emerging techniques applied to remediate contaminated sediments, while the effect of sediments elution on the germination and growth of submerged macrophyte remains unclear. Two typical in situ physical elution treatments, including in situ air elution and in situ hydraulic elution, were simulated to treat the sediments enriched with organic matter to investigate the effects of physical elution on the germination and growth of Vallisneria natans (Lour.) Hara and the physiochemical properties of the sediments. The results indicated that the typical germination and growth index of Vallisneria natans (Lour.) Hara, such as the germination rate and speed of seeds, the fresh weight and the height, the leaf number and the root number all increased in post-eluted sediments. Compared to the control group, the indexes of the hydraulic elution group showed better, as the germination rate increased to 2.9 times, the plant height and the root number increased to 2.29 and 4.76 times. After the physical elution treatments on sediment, the ammonia ($NH_{4}^{-}$-N) and acid volatile sulfide (AVS) contents decreased by 34.15%-35.19% and 7.67%-44.89%, respectively, and the concentrations of organic matter was lowered by 70.04%-77.90%. The oxidation-reduction potential of surface sediments (0-5 cm) was alleviated, from strong reduction state (ORP<-350 mV) to weak reduction state (ORP:-200--100 mV). In addition, the proportion of large sediment particles (50-2 000 μm) in the sedment increased to 89.02%-92.84%, promoting the diffusion of dissolved oxygen in the overlying water into the sediments, hence facilitating the germination and growth ofVallisneria natans (Lour.) Hara. After in-situ physical elution, especially after hydraulic elution, the physical and chemical conditions of the sediments were more favorable to the germination and growth of Vallisneria natans (Lour.) Hara.

     

  • loading
  • [1]
    邱东茹, 吴振斌. 武汉东湖水生植物生态学研究:Ⅲ.沉水植被重建的可行性研究[J]. 长江流域资源与环境, 1998, 7(1):42-48.

    QIU D R, WU Z B. Ecological studies on aquatic macrophytes in lake Donghu of Wuhan:Ⅲ.feasibility for rehabilitation of submerged macrophytes in the lake[J]. Resources and Environment in the Yangtza Basin, 1998, 7(1):42-48.
    [2]
    严国安, 马剑敏, 邱东茹, 等. 武汉东湖水生植物群落演替的研究[J]. 植物生态学报, 1997, 21(4):319-327.
    pmid: 52A25DEC-3609-4EA0-8992-64E8FF037E43

    YAN G A, MA J M, QIU D R, et al. Succession and species replacement of aquatic plant community in East Lake[J]. Acta Phytoecologica Sinica, 1997, 21(4):319-327. pmid: 52A25DEC-3609-4EA0-8992-64E8FF037E43
    [3]
    徐德瑞, 周杰, 张建华, 等. 东太湖沉水植物现状及影响因子分析[J]. 水电能源科学, 2020, 38(4):64-67.

    XU D R, ZHOU J, ZHANG J H, et al. Status of submerged plants and its influencing factors in east Lake Taihu[J]. Water Resources and Power, 2020, 38(4):64-67.
    [4]
    王琦, 高晓奇, 肖能文, 等. 滇池沉水植物的分布格局及其水环境影响因子识别[J]. 湖泊科学, 2018, 30(1):157-170.
    doi: 10.18307/2018.0116

    WANG Q, GAO X Q, XIAO N W, et al. Distribution pattern of submerged macrophytes and its influencing factors of water environment in Lake Dianchi[J]. Journal of Lake Sciences, 2018, 30(1):157-170. doi: 10.18307/2018.0116
    [5]
    LAI W L, ZHANG Y, CHEN Z H. Radial oxygen loss,photosynthesis,and nutrient removal of 35 wetland plants[J]. Ecological Engineering, 2012, 39:24-30.
    doi: 10.1016/j.ecoleng.2011.11.010
    [6]
    SOANA E, NALDI M, BARTOLI M. Effects of increasing organic matter loads on pore water features of vegetated ( Vallisneria spiralis L.) and plant-free sediments [J]. Ecological Engineering, 2012, 47:141-145.
    doi: 10.1016/j.ecoleng.2012.06.016
    [7]
    ZHUANG K, SHI D L, HU Z B, et al. Subcellular accumulation and source of O2- and H2O2 in submerged plant Hydrilla verticillata (L.f.) Royle under $NH_{4}^{+}$-N stress condition[J]. Aquatic Toxicology,2019,207:1-12.
    doi: 10.1016/j.aquatox.2018.11.011
    [8]
    van ZUIDAM B G, CAZEMIER M M, van GEEST G J, et al. Relationship between redox potential and the emergence of three submerged macrophytes[J]. Aquatic Botany, 2014, 113:56-62.
    doi: 10.1016/j.aquabot.2013.10.005
    [9]
    TERRADOS J, DUARTE C M, KAMP-NIELSEN L, et al. Are seagrass growth and survival constrained by the reducing conditions of the sediment[J]. Aquatic Botany, 1999, 65(1/2/3/4):175-197.
    doi: 10.1016/S0304-3770(99)00039-X
    [10]
    van WIJCK C, de GROOT C J, GRILLAS P. The effect of anaerobic sediment on the growth of Potamogeton pectinatus L.:the role of organic matter,sulphide and ferrous iron [J]. Aquatic Botany, 1992, 44(1):31-49.
    doi: 10.1016/0304-3770(92)90079-X
    [11]
    GNANDI K, HAN S, REZAIE-BOROON M H, et al. Increased bioavailability of mercury in the lagoons of Lomé,Togo: the possible role of dredging[J]. AMBIO, 2011, 40(1):26-42.
    doi: 10.1007/s13280-010-0094-4
    [12]
    马永刚, 程瑾, 励彦德, 等. 氮、磷吸附/解吸法确定环保疏浚深度方法探讨:以太原汾河示范段为例[J]. 环境工程技术学报, 2020, 10(3):392-399.

    MA Y G, CHENG J, LI Y D, et al. Discussion on the way of determining environmental dredging depth based on nitrogen and phosphorus adsorption/desorption method:taking the demonstration section of Fenhe River in Taiyuan as an example[J]. Journal of Environmental Engineering Technology, 2020, 10(3):392-399.
    [13]
    PENG J F, SONG Y H, YUAN P, et al. The remediation of heavy metals contaminated sediment[J]. Journal of Hazardous Materials, 2009, 161(2/3):633-640.
    doi: 10.1016/j.jhazmat.2008.04.061
    [14]
    姜霞, 王书航, 张晴波, 等. 污染底泥环保疏浚工程的理念·应用条件·关键问题[J]. 环境科学研究, 2017, 30(10):1497-1504.

    JIANG X, WANG S H, ZHANG Q B, et al. Analysis of concepts,conditions and critical problems in environmental dredging[J]. Research of Environmental Sciences, 2017, 30(10):1497-1504.
    [15]
    HEDGE L H, KNOTT N A, JOHNSTON E L. Dredging related metal bioaccumulation in oysters[J]. Marine Pollution Bulletin, 2009, 58(6):832-840.
    doi: 10.1016/j.marpolbul.2009.01.020
    [16]
    ZAWAL A, STĘ PIEŃ E, SZLAUER-ŁUKASZEWSKA A, et al. The influence of dredging of a lowland river (the Krąpiel in NW Poland) on water mite fauna (Acari:Hydrachnidia)[J]. Fundamental and Applied Limnology, 2015, 186(3):217-232.
    doi: 10.1127/fal/2015/0735
    [17]
    刘丽香, 韩永伟, 刘辉, 等. 疏浚技术及其对污染水体治理效果的影响[J]. 环境工程技术学报, 2020, 10(1):63-71.

    LIU L X, HAN Y W, LIU H, et al. Dredging technology and its effect on the treatment of polluted water[J]. Journal of Environmental Engineering Technology, 2020, 10(1):63-71.
    [18]
    PENG W H, LI X M, XIAO S T, et al. Review of remediation technologies for sediments contaminated by heavy metals[J]. Journal of Soils and Sediments, 2018, 18(4):1701-1719.
    doi: 10.1007/s11368-018-1921-7
    [19]
    李国宏, 叶碧碧, 吴敬东, 等. 原位洗脱技术对凉水河底泥中氮、磷释放特征的影响[J]. 环境工程学报, 2020, 14(3):671-680.

    LI G H, YE B B, WU J D, et al. Effect of in situ physical elution technology on release features of nitrogen and phosphorus in the sediment of Liangshui River [J]. Chinese Journal of Environmental Engineering, 2020, 14(3):671-680.
    [20]
    李国宏, 叶碧碧, 吴敬东, 等. 底泥原位洗脱过程中氮磷含量与形态变化特征[J]. 环境科学研究, 2020, 33(2):392-401.

    LI G H, YE B B, WU J D, et al. Changing characteristics on contents and forms of nitrogen and phosphorus in sediment during in situ physical elution [J]. Research of Environmental Sciences, 2020, 33(2):392-401.
    [21]
    杜海明, 余增亮, 吴敬东, 等. 受污染水体底泥洗脱原位置换的方法及其清污设备:CN102503005A[P].2012-06-20.
    [22]
    左进城, 李秀玲, 张鹏, 等. 吲哚乙酸和激动素对苦草种子萌发和幼苗生长的影响[J]. 北方园艺, 2014(23):53-56.

    ZUO J C, LI X L, ZHANG P, et al. Effect of IAA and KT on seed germination and seedling growth of Vallisneria spiralis [J]. Northern Horticulture, 2014(23):53-56.
    [23]
    DASB. Principles of geotechnical engineering[M]. Stamford: Cengage Learning, 2013.
    [24]
    储昭升, 刘文新, 汤鸿霄. 官厅水库-永定河沉积物中AVS-SEM的分析[J]. 环境化学, 2003, 22(4):313-317.

    CHU Z S, LIU W X, TANG H X. Analysis of avs-sem in the sediments of Guanting reservoir and Yongding River[J]. Environmental Chemistry, 2003, 22(4):313-317.
    [25]
    ALLEN H E, FU G M, DENG B L. Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments[J]. Environmental Toxicology and Chemistry, 1993, 12(8):1441-1453.
    doi: 10.1002/etc.v12:8
    [26]
    GREENWOOD M E, MACFARLANE G R. Effects of salinity and temperature on the germination of Phragmites australis, Juncus kraussii,and Juncus acutus:implications for estuarine restoration initiatives[J]. Wetlands, 2006, 26(3):854-861.
    doi: 10.1672/0277-5212(2006)26[854:EOSATO]2.0.CO;2
    [27]
    胡小芳, 胡大为, 吴成宝. 土壤透气性及粘土颗粒比表面积与粘土颗粒粒度分布分形维数关系[J]. 土壤通报, 2007, 38(2):215-219.

    HU X F, HU D W, WU C B. Correlation of soil air permeability and specific area with clay particle size distribution fractal value[J]. Chinese Journal of Soil Science, 2007, 38(2):215-219.
    [28]
    SHEN P F, LI G, LIU J F, et al. Gas permeability and production potential of marine hydrate deposits in South China sea[J]. Energies, 2019, 12(21):4117.
    doi: 10.3390/en12214117
    [29]
    VERSHININ A V, ROZANOV A G. The platinum electrode as an indicator of redox environment in marine sediments[J]. Marine Chemistry, 1983, 14(1):1-15.
    doi: 10.1016/0304-4203(83)90065-8
    [30]
    ZHOU Q Y, GAO J Q, ZHANG R M, et al. Ammonia stress on nitrogen metabolism in tolerant aquatic plant: Myriophyllum aquaticum [J]. Ecotoxicology and Environmental Safety, 2017, 143:102-110.
    doi: 10.1016/j.ecoenv.2017.04.016
    [31]
    ZHU Z J, SONG S Y, YAN Y E, et al. Combined effects of light reduction and ammonia nitrogen enrichment on the submerged macrophyte Vallisneria natans [J]. Marine and Freshwater Research, 2018, 69(5):764.
    doi: 10.1071/MF17146
    [32]
    ZHU Z J, SONG S Y, LI P S, et al. Growth and physiological responses of submerged plant Vallisneria natans to water column ammonia nitrogen and sediment copper [J/OL]. PeerJ, 2016, 4:e1953.doi: 10.7717/peerj.1953.
    doi: 10.7717/peerj.1953
    [33]
    朱伟, 张俊, 赵联芳. 底质中氨氮对沉水植物生长的影响[J]. 生态环境, 2006, 15(5):914-920.

    ZHU W, ZHANG J, ZHAO L F. Effect of ammonia in the sediment on the growth and physiological characteristics of submerged macrophytes[J]. Ecology and Environment, 2006, 15(5):914-920.
    [34]
    LI T, LI X J, ZHONG H X, et al. Distribution of trace metals and the benthic foraminiferal assemblage as a characterization of the environment in the north Minjiang River Estuary (Fujian,China)[J]. Marine Pollution Bulletin, 2015, 90(1/2):227-241.
    doi: 10.1016/j.marpolbul.2014.10.047
    [35]
    MANNA M, SWARUP A, WANJARI R, et al. Soil organic matter in a west Bengal Inceptisol after 30 years of multiple cropping and fertilization[J]. Soil Science Society of America Journal, 2006, 70(1):121-129.
    doi: 10.2136/sssaj2005.0180
    [36]
    任素梅, 孙林枫. 黄河口海域有机氮的分布特征[J]. 海洋湖沼通报, 1988(2):87-91.

    REN S M, SUN L F. The distribution of organic nitrogen in the estuary of Yellow River[J]. Transactions of Oceanology and Limnology, 1988(2):87-91.
    [37]
    PARVEEN M, ASAEDA T, RASHID M H. Effect of hydrogen sulfide exposure on the growth,oxidative stress and carbohydrate metabolism of Elodea nuttallii and Egeria densa [J]. Fundamental and Applied Limnology, 2018, 191(1):53-62.
    doi: 10.1127/fal/2017/1046
    [38]
    PARVEEN M, ASAEDA T, RASHID M H. Biochemical adaptations of four submerged macrophytes under combined exposure to hypoxia and hydrogen sulphide[J/Ol]. PLoS One, 2017, 12(8):e0182691.doi: 10.1371/journal.pone.0182691.
    doi: 10.1371/journal.pone.0182691
    [39]
    PARVEEN M, ASAEDA T, RASHID M H. Hydrogen sulfide induced growth,photosynthesis and biochemical responses in three submerged macrophytes[J]. Flora, 2017, 230:1-11.
    doi: 10.1016/j.flora.2017.03.005
    [40]
    余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐的形态分布特征与评价[J]. 环境科学, 2010, 31(4):961-968.

    YU H, ZHANG W B, LU S Y, et al. Spatial distribution characteristics of surface sediments nutrients in Lake Hongze and their pollution status evaluation[J]. Environmental Science, 2010, 31(4):961-968.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(333) PDF Downloads(76) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return