Volume 11 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
YUAN Qiang, YU Li, LI Weihua, YANG Houyun, WANG Rong, XU Dumin. Dynamic differences of microcystins and their relationship with environmental factors in spring in Lake Chaohu and Lake Taihu[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 267-277. doi: 10.12153/j.issn.1674-991X.20200225
Citation: YUAN Qiang, YU Li, LI Weihua, YANG Houyun, WANG Rong, XU Dumin. Dynamic differences of microcystins and their relationship with environmental factors in spring in Lake Chaohu and Lake Taihu[J]. Journal of Environmental Engineering Technology, 2021, 11(2): 267-277. doi: 10.12153/j.issn.1674-991X.20200225

Dynamic differences of microcystins and their relationship with environmental factors in spring in Lake Chaohu and Lake Taihu

doi: 10.12153/j.issn.1674-991X.20200225
More Information
  • Corresponding author: YU Li E-mail: yuli514605@163.com
  • Received Date: 2020-09-16
  • Publish Date: 2021-03-20
  • In order to explore the dynamic differences of intracellular microcystins (IMCs) and key influencing factors in spring for Lake Chaohu and Lake Taihu, samples were analyzed from different lake areas of this two lakes in March, April and May of 2019. The results indicated that IMCs showed obvious temporal and spatial distribution characteristics in Lake Chaohu and Lake Taihu during the sampling period, the concentration of IMCs increased month by month, and IMCs in the high eutrophication lake area was significantly higher than that in the low eutrophication lake area. IMC-LR was the main isomer of IMCs in the two lakes, accounting for 65.10% and 58.10%, respectively. IMCs concentration between the two lakes were significantly different, the average concentration of IMCs in Lake Chaohu (0.077, 0.238, 0.632 μg/L) was obviously higher than that in Lake Taihu (0.021, 0.031, 0.166 μg/L), and the toxicity of IMCs per unit biomass (IMCs/Chla and IMC-LR/Chla) was also significantly higher than that in Lake Taihu. The correlation analysis showed that TN, TP and TN/TP were the key environmental factors affecting the concentration of IMCs and the toxicity of IMCs per unit biomass, and the abundance and capacity of toxin-producing algae may be the important reasons for the difference.

     

  • loading
  • [1]
    宋菲菲, 胡小贞, 金相灿, 等. 国外不同类型湖泊治理思路分析与启示[J]. 环境工程技术学报, 2013,3(2):156-162.

    SONG F F, HU X Z, JIN X C, et al. Analysis of lake management strategies of different types of lakes abroad and enlightenments for China[J]. Journal of Environmental Engineering Technology, 2013,3(2):156-162.
    [2]
    POSTE A E, HECKY R E, GUILDFORD S J. Evaluating microcystin exposure risk through fish consumption[J]. Environmental Science & Technology, 2011,45(13):5806-5811.
    pmid: 21671629
    [3]
    王靖国, 邹华, 张强, 等. 太湖微囊藻毒素的时空分布特征[J]. 环境科学研究, 2014,27(7):696-703.

    WANG J G, ZOU H, ZHANG Q, et al. Spatial and temporal distribution of microcystin in Taihu Lake[J]. Research of Environmental Sciences, 2014,27(7):696-703.
    [4]
    de FIGUEIREDO D R, AZEITEIRO U M, ESTEVES S M, et al. Microcystin-producing blooms:a serious global public health issue[J]. Ecotoxicology and Environmental Safety, 2004,59(2):151-163.
    doi: 10.1016/j.ecoenv.2004.04.006 pmid: 15327870
    [5]
    NISHIZAWA T, UEDA A, ASAYAMA M, et al. Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynjournal of the cyclic heptapeptide microcystin[J]. Journal of Biochemistry, 2000,127(5):779-789.
    [6]
    BARTRAM J, CHORUS I. Toxic cyanobacteria in water:a guide to their public health consequences monitoring and management[J]. Limnology and Oceanography, 2000,45(5):255-258.
    [7]
    JEONG B, OH M S, PARK H M, et al. Elimination of microcystin-LR and residual Mn species using permanganate and powdered activated carbon:oxidation products and pathways[J]. Water Research, 2017,114:189-199.
    [8]
    DAWSON R M. The toxicology of microcystins[J]. Toxicon, 1998,36(7):953-962.
    doi: 10.1016/s0041-0101(97)00102-5 pmid: 9690788
    [9]
    LIU Y M, CHEN W, LI D H, et al. Cyanobacteria-/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu,China[J]. Journal of Environmental Sciences, 2011,23(4):575-581.
    [10]
    CONG L M, HUANG B F, CHEN Q, et al. Determination of trace amount of microcystins in water samples using liquid chromatography coupled with triple quadrupole mass spectrometry[J]. Analytica Chimica Acta, 2006,569(1/2):157-168.
    [11]
    CARMICHAEL W W. Cyanobacteria secondary metabolites-the cyanotoxins[J]. Journal of Applied Bacteriology, 1992,72(6):445-459.
    [12]
    FALCONER I, BARTRAM J, CHORUS I, et al. Safe levels and safe practice[M]// CHORUS I,BARTRAM J.Toxic cyanobacteria in water:a guide to their public health consequences,monitoring and management. London, Spon Press, 1999:155-178.
    [13]
    孔繁翔, 高光. 大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J]. 生态学报, 2005,25(3):589-595.

    KONG F X, GAO G. Hypojournal on cyanobacteria bloom-forming mechanism in large shallow eutrophic lakes[J]. Acta Ecologica Sinica, 2005,25(3):589-595.
    [14]
    王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998.
    [15]
    范成新, 杨龙元, 张路. 太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J]. 湖泊科学, 2000,12(4):359-366.

    FAN C X, YANG L Y, ZHANG L. The vertical distributions of nitrogen and phosphorus in the sediment and interstitial water in Taihu Lake and their interrelations[J]. Journal of Lake Sciences, 2000,12(4):359-366.
    [16]
    国家环境保护总局,《水和废水监测分析方法》编委会. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
    [17]
    余丽, 朱广伟, 孔繁翔, 等. 巢湖微囊藻毒素异构体组成的时空分布特征及影响因子[J]. 湖泊科学, 2019,31(3):700-713.

    YU L, ZHU G W, KONG F X, et al. Spatiotemporal characteristics of microcystin variants composition and associations with environmental parameters in Lake Chaohu,China[J]. Journal of Lake Sciences, 2019,31(3):700-713.
    [18]
    王明翠, 刘雪芹, 张建辉. 湖泊富营养化评价方法及分级标准[J]. 中国环境监测, 2002,18(5):47-49.

    WANG M C, LIU X Q, ZHANG J H. Evaluate method and classification standard on lake eutrophication[J]. Environmental Monitoring in China, 2002,18(5):47-49.
    [19]
    袁丽娟, 廖且根, 张莉, 等. 鄱阳湖微囊藻毒素时空分布格局及其与理化和生物因子的关系[J]. 环境科学, 2018,39(1):450-459.

    YUAN L J, LIAO Q G, ZHANG L, et al. Seasonal and spatial variations of microcystins and their relationships with physiochemical and biological factors in Poyang Lake[J]. Environmental Science, 2018,39(1):450-459.
    [20]
    HORST G P, SARNELLE O, WHITE J D, et al. Nitrogen availability increases the toxin quota of a harmful cyanobacterium, Microcystis aeruginosa[J]. Water Research, 2014,54:188-198.
    [21]
    KOTAK B G, LAM A K Y, PREPAS E E, et al. Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2000,57(8):1584-1593.
    [22]
    RINTA-KANTO J M, KONOPKO E A, DEBRUYN J M, et al. Lake Erie Microcystis:relationship between microcystin production,dynamics of genotypes and environmental parameters in a large lake[J]. Harmful Algae, 2009,8(5):665-673.
    [23]
    张玮, 林一群, 郭定芳, 等. 不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响[J]. 水生生物学报, 2006,30(3):318-322.

    ZHANG W, LIN Y Q, GUO D F, et al. Influence of different nitrogen and phosphorus concentrations on growth,photosynjournal and microcystin production of Microcystis aeruginosa[J]. Acta Hydrobiologica Sinica, 2006,30(3):318-322.
    [24]
    YU L, KONG F X, ZHANG M, et al. The dynamics of Microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu,China[J]. Toxins, 2014,6(12):3238-3257.
    pmid: 25474494
    [25]
    朱余, 王凤. 巢湖流域水质状况与环境目标可达性分析[J]. 环境监测管理与技术, 2004,16(6):22-23.

    ZHU Y, WANG F. Water quality in Chaohu Lake watershed and the its environmental objects[J]. The Administration and Technique of Environmental Monitoring, 2004,16(6):22-23.
    [26]
    刘成, 邵世光, 范成新, 等. 巢湖重污染汇流湾区沉积物营养盐分布与释放风险[J]. 环境科学研究, 2014,27(11):1258-1264.

    LIU C, SHAO S G, FAN C X, et al. Distribution and release risk of nutrients in the sediments of heavily polluted confluence bay of Chaohu Lake[J]. Research of Environmental Sciences, 2014,27(11):1258-1264.
    [27]
    朱庆春. 巢湖水体富营养化成因分析及治理对策[J]. 安徽农学通报, 2017,23(9):97-98.

    ZHU Q C. Cause analysis and governance measures of eutrophication in Chaohu Lake[J]. Anhui Agricultural Science Bulletin, 2017,23(9):97-98.
    [28]
    魏代春, 苏婧, 纪丹凤, 等. 基于太湖微囊藻毒素的叶绿素a阈值研究[J]. 环境科学, 2014,35(12):4530-4536.

    WEI D C, SU J, JI D F, et al. Research on the threshold of Chl-a in Lake Taihu based on microcystins[J]. Environmental Science, 2014,35(12):4530-4536.
    [29]
    XIAO C C, CHEN M J, MEI F B, et al. Influencing factors and health risk assessment of microcystins in the Yongjiang River (China) by Monte Carlo simulation[J]. PeerJ, 2018,6:5955.
    [30]
    WANG Q, NIU Y, XIE P, et al. Factors affecting temporal and spatial variations of microcystins in Gonghu Bay of Lake Taihu,with potential risk of microcystin contamination to human health[J]. The Scientific World Journal, 2010,10:1795-1809.
    [31]
    席北斗, 陈艳卿, 苏婧. 湖泊营养物标准方法学及案例研究[M]. 北京: 科学出版社, 2013:71-98.

    SHI K, ZHANG Y L, XU H, et al. Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods[J]. Environmental Science & Technology, 2015,49(11):6448-6456.
    [33]
    HUISMAN J, MATTHIJS H C P, VISSER P M, et al. Harmful cyanobacteria (aquatic ecology series)[M]. Berlin/Heidelberg:Springer-Verlag, 2005.
    [34]
    李大命, 孔繁翔, 张民, 等. 太湖和巢湖夏季蓝藻水华期间产毒微囊藻和非产毒微囊藻种群丰度的空间分布[J]. 应用与环境生物学报, 2011,17(4):480-485.

    LI D M, KONG F X, ZHANG M, et al. Spatial changes in abundance of microcystin-producing and non-microcystin producing microcystis populations in the Taihu Lake and the Chaohu Lake during cyanobacterial bloom period[J]. Chinese Journal of Applied & Environmental Biology, 2011,17(4):480-485.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(392) PDF Downloads(106) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return