Volume 11 Issue 3
May  2021
Turn off MathJax
Article Contents
LI Juan, CHENG Luyao, ZENG Ping, WANG Yan, HAN Lu, ZHAO Xiumei. Comprehensive evaluation of wastewater treatment technology in pharmaceutical industry based on AHP-FCE model[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 591-598. doi: 10.12153/j.issn.1674-991X.20200151
Citation: LI Juan, CHENG Luyao, ZENG Ping, WANG Yan, HAN Lu, ZHAO Xiumei. Comprehensive evaluation of wastewater treatment technology in pharmaceutical industry based on AHP-FCE model[J]. Journal of Environmental Engineering Technology, 2021, 11(3): 591-598. doi: 10.12153/j.issn.1674-991X.20200151

Comprehensive evaluation of wastewater treatment technology in pharmaceutical industry based on AHP-FCE model

doi: 10.12153/j.issn.1674-991X.20200151
More Information
  • Corresponding author: ZENG Ping E-mail: zengping@craes.org.cn
  • Received Date: 2020-06-15
  • Publish Date: 2021-05-20
  • Pharmaceutical wastewater is difficult to be treated because of its complex water quality, high COD, high content of toxic and harmful substances, poor biodegradability and high chrominance. There are many kinds of pharmaceutical wastewater treatment technologies, and each technology has its own characteristics. In order to correctly select the appropriate pharmaceutical wastewater treatment technologies, the evaluation index system and the evaluation standard of the wastewater treatment technologies in pharmaceutical industry were established. The analytic hierarchy process and fuzzy comprehensive evaluation (AHP-FCE) method was used to comprehensively evaluate 13 pharmaceutical wastewater treatment technologies supported by National Major Scientific and Technological Special Projects for Water Pollution Control and Management (Major Water Project). The results showed that UASB-MBR was a more feasible pharmaceutical wastewater treatment technology among the 13 technologies, followed by two-stage separation internal circulation anaerobic reactor and ABR-CASS biological enhancement technology. The results could provide strong support for pharmaceutical enterprises to choose appropriate wastewater treatment technologies.

     

  • loading
  • [1]
    李亚峰, 高颖. 制药废水处理技术研究进展[J]. 水处理技术, 2014, 40(5):1-4.

    LI Y F, GAO Y. Research progress in the treatment technologies of pharmaceutical wastewater[J]. Technology of Water Treatment, 2014, 40(5):1-4.
    [2]
    ESCHER B I, BAUMGARTNER R, KOLLER M, et al. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater[J]. Water Research, 2011, 45(1):75-92.
    doi: 10.1016/j.watres.2010.08.019
    [3]
    张岩. 制药废水处理技术研究进展[J]. 工业水处理, 2018, 38(5):5-9.

    ZHANG Y. Research progress in the treatment technologies of pharmaceutical wastewater[J]. Industrial Water Treatment, 2018, 38(5):5-9.
    [4]
    任越中, 张嘉雯, 魏健, 等. 铈负载改性天然沸石催化臭氧氧化水中青霉素G[J]. 环境工程技术学报, 2019, 9(1):28-35.

    REN Y Z, ZHANG J W, WEI J, et al. Catalytic ozonation of penicillin G in aqueous phase using modified natural zeolite supported cerium[J]. Journal of Environmental Engineering Technology, 2019, 9(1):28-35.
    [5]
    赵平, 王振, 吴赳, 等. 制药废水膜法深度处理效果分析[J]. 应用化工, 2020, 49(2):522-526.

    ZHAO P, WANG Z, WU J, et al. Advanced treatment effect analysis of pharmaceutical wastewater with membrane separation[J]. Applied Chemical Industry, 2020, 49(2):522-526.
    [6]
    胥国防, 王璐, 廖宇宏, 等. 制药废水混凝条件优化和荧光性DOM的去除[J]. 环境科学与技术, 2018, 41(增刊1):132-138.
    doi: 10.1021/es061198b

    XU G F, WANG L, LIAO Y H, et al. Optimization of the coagulation pretreatment of pharmaceutical wastewater and the removal characteristics of fluorescence dissolved organic substances[J]. Environmental Science & Technology, 2018, 41(Suppl 1):132-138. doi: 10.1021/es061198b
    [7]
    宋永会, 魏健, 马印臣, 等. 络合萃取法处理金刚烷胺制药废水[J]. 环境科学研究, 2014, 27(12):1513-1518.

    SONG Y H, WEI J, MA Y C, et al. Treatment of amantadine pharmaceutical wastewater by complexation extraction[J]. Research of Environmental Sciences, 2014, 27(12):1513-1518.
    [8]
    崔晓宇, 曾萍, 邱光磊, 等. 铁碳微电解法处理黄连素含铜废水中试研究[J]. 环境工程技术学报, 2012, 2(4):319-324.

    CUI X Y, ZENG P, QIU G L, et al. Treatment of berberine wastewater containing copper by Fe-C microelectrolysis process:a pilot-scale test[J]. Journal of Environmental Engineering Technology, 2012, 2(4):319-324.
    [9]
    AKMEHMET BALCıOĞLU I, ÖTKER M. Treatment of pharmaceutical wastewater containing antibiotics by O3 and O3/H2O2 processes [J]. Chemosphere, 2003, 50(1):85-95.
    doi: 10.1016/S0045-6535(02)00534-9
    [10]
    CUI X Y, ZENG P, QIU G L, et al. Pilot-scale treatment of pharmaceutical berberine wastewater by Fenton oxidation[J]. Environmental Earth Sciences, 2015, 73(9):4967-4977.
    doi: 10.1007/s12665-015-4342-6
    [11]
    廖苗, 樊亚东, 刘诗月, 等. 进水成分变动下ABR-CASS耦合工艺处理制药综合废水的中试研究[J]. 环境工程技术学报, 2017, 7(3):293-299.

    LIAO M, FAN Y D, LIU S Y, et al. Pilot-scale treatment of pharmaceutical comprehensive wastewater by ABR-CASS fed with different batches of influent[J]. Journal of Environmental Engineering Technology, 2017, 7(3):293-299.
    [12]
    OKTEM Y A, INCE O, SALLIS P, et al. Anaerobic treatment of a chemical synthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludge blanket reactor[J]. Bioresource Technology, 2008, 99(5):1089-1096.
    doi: 10.1016/j.biortech.2007.02.036
    [13]
    QIU G L, SONG Y H, ZENG P, et al. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket(UASB)-membrane bioreactor(MBR)process for berberine antibiotic wastewater treatment[J]. Bioresource Technology, 2013, 142:52-62.
    doi: 10.1016/j.biortech.2013.04.077
    [14]
    王兵, 孙启宏, 扈学文, 等. 铅冶炼污染防治最佳可行技术筛选研究[J]. 环境工程技术学报, 2011, 1(6):526-532.

    WANG B, SUN Q H, HU X W, et al. Screening of best available techniques for lead smelting pollution prevention and control[J]. Journal of Environmental Engineering Technology, 2011, 1(6):526-532.
    [15]
    栾黎明, 齐兆军, 寇云鹏. 基于AHP-FCE的尾砂脱水方案优选[J]. 矿业研究与开发, 2020, 40(3):150-154.

    LUAN L M, QI Z J, KOU Y P. Optimization of tailings dewatering method based on AHP-FCE[J]. Mining Research and Development, 2020, 40(3):150-154.
    [16]
    王堃, 冷振东, 唐菲菲, 等. 基于AHP-FCE的绿色砂石矿山综合评价模型[J]. 露天采矿技术, 2020, 35(2):1-5.

    WANG K, LENG Z D, TANG F F, et al. Comprehensive evaluation model of green dinas mine based on AHP-FCE[J]. Opencast Mining Technology, 2020, 35(2):1-5.
    [17]
    郭潇敏, 沈燕萍. 基于AHP-FCE模型的中小煤炭企业财务绩效评价:以A企业为例[J]. 中国中小企业, 2020(1):115-116.
    [18]
    任美洁. 脉冲电絮凝法处理制药废水研究[D]. 北京: 中国环境科学研究院, 2010.
    [19]
    买文宁, 代吉华, 贾晓凤, 等. 发酵类制药废水集成处理方法:CN102351377A[P].2012-02-15.
    [20]
    邱光磊, 宋永会, 曾萍, 等. UASB-MBR组合工艺处理模拟黄连素废水[J]. 环境科学研究, 2010, 23(7):942-947.

    QIU G L, SONG Y H, ZENG P, et al. Treatment of synthetic berberine wastewater in a hybrid upflow anaerobic sludge blanket reactor(UASB)-membrane bioreactor(MBR)system[J]. Research of Environmental Sciences, 2010, 23(7):942-947.
    [21]
    崔晓宇, 何绪文, 曾萍, 等. UASB-MBR组合工艺处理黄连素废水的中试[J]. 环境科学研究, 2015, 28(8):1295-1301.

    CUI X Y, HE X W, ZENG P, et al. A pilot-scale hybrid upflow anaerobic sludge blanket reactor(UASB)-membrane bioreactor(MBR) system for berberine wastewater treatment[J]. Research of Environmental Sciences, 2015, 28(8):1295-1301.
    [22]
    单永平, 曾萍, 宋永会, 等. 胺基修饰的大孔树脂吸附黄连素的研究[J]. 环境科学学报, 2013, 33(9):2452-2458.

    SHAN Y P, ZENG P, SONG Y H, et al. Berberine adsorption by amino-modified polymeric adsorbent[J]. Acta Scientiae Circumstantiae, 2013, 33(9):2452-2458.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(473) PDF Downloads(87) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return