Volume 8 Issue 5
Sep.  2018
Turn off MathJax
Article Contents
WU Xin, HE Shuzhuang, LU Yifeng, LU Shaoyong, ZHANG Junpeng, HU Tao, ZHANG Senlin, CHEN Fangxin. Effects of inflow modes on sewage nitrogen removal by ecological gravel beds[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 481-487. doi: 10.3969/j.issn.1674-991X.2018.05.063
Citation: WU Xin, HE Shuzhuang, LU Yifeng, LU Shaoyong, ZHANG Junpeng, HU Tao, ZHANG Senlin, CHEN Fangxin. Effects of inflow modes on sewage nitrogen removal by ecological gravel beds[J]. Journal of Environmental Engineering Technology, 2018, 8(5): 481-487. doi: 10.3969/j.issn.1674-991X.2018.05.063

Effects of inflow modes on sewage nitrogen removal by ecological gravel beds

doi: 10.3969/j.issn.1674-991X.2018.05.063
  • Received Date: 2018-05-30
  • Publish Date: 2018-09-20
  • In order to improve the nitrogen removal rate of residential sewage by ecological gravel beds, four kinds of constructed ecological gravel bed were designed, including Schoenoplectus tabernaemontani bed, Phragmites australis bed, Typha orientalis bed and blank bed without vegetation. The effects of two inflow modes, i.e. continuous inflow and intermittent inflow, on the removal of TN, NH4+-N, and NO3--N were studied. The hydraulic load (HL) was 7.5 cm∕d and the hydraulic retention time (HRT) was 1.8 d under the continuous inflow, while the HL was 7.5 cm∕d and the HRT was 5.4 d under the intermittent inflow. The results show that there exists great difference of the nitrogen removal efficiency between two inflow modes for different ecological gravel beds. The removal rates of TN and ammonia nitrogen under continuous inflow were in the order of Typha orientalis bed> Schoenoplectus tabernaemontani bed > blank bed > Phragmites australis bed, with the highest removal rates by Typha orientalis bed, which removal rate of TN and ammonia nitrogen were 77.68% and 81.33%, respectively; the removal rates of nitrate nitrogen were in the order of blank bed>Phragmites australis bed>Tyha orientalis bed>Schoenoplectus tabernaemontani bed, with thee highest removal rates by blank bed, which removal rate of nitrate nitrogen was 65.29%. The removal rates of TN and ammonia nitrogen under intermittent inflow were in the order of Schoenoplectus tabernaemontani bed > Phragmites australis bed > Typha orientalis bed> blank bed, and the effect of Schoenoplectus tabernaemontani bed was the best, which removal rate of TN and ammonia nitrogen were 89.54% and 91.79%, respectively; the removal rates of nitrate nitrogen were in the order of Schoenoplectus tabernaemontani bed>Typha orientalis bed>blank bed>Phragmites australis bed, the Schoenoplectus tabernaemontanid bed was the best with a removal rate of 46.43%. The removal efficiency of ammonia nitrogen and TN were better improved by intermittent inflow in plant systems. The removal rate of TN and ammonia nitrogen increased by 19.63% and 14.76% in Phragmites australis bed, and the removal rate of TN and ammonia nitrogen increased by 19.14% and 18.60% in Schoenoplectus tabernaemontani bed, respectively.

     

  • loading
  • [1]
    汪俊三. 植物碎石床人工湿地污水处理技术和我的工程案例[M].北京:中国环境科学出版社,2009.
    [2]
    CHOI J Y,MANIQUIZ-REDILLAS M C,HONG J S,et al.Comparison of the treatment performance of hybrid constructed wetlands treating stormwater runoff[J].Water Science & Technology.A Journal of the International Association on Water Pollution Research,2015,72(12):2243-2250.
    doi: 10.2166/wst.2015.443 pmid: 26676013
    [3]
    長内武逸. 礫間接触酸化法による河川水の直接浄化[J].用水と廃水,1990,32(8):16-25.
    [4]
    楠田哲也. 自然の浄化機構の強化と制御[M].東京:技報堂出版,1994.
    [5]
    侯俊. 生态型河道构建原理及应用技术研究[D].南京:河海大学,2005.

    HOU J.Research on the construction theory of ecological river and it’s application technology[D].Nanjing:Hohai University,2005.
    [6]
    杨星宇,彭润之.碎石床湿地去除城镇污水厂出水中磷的研究[J].地球与环境,2006,34(3):92-96.

    YANG X Y, PENG R Z.Study on removal of phosphorus in effluent from town sewage treatment plants by stone wetlands[J].Earth & Environment,2006,34(3):92-96.
    [7]
    国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [8]
    卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.

    LU S Y,JIN X C,YU G.Nitrogen removal mechanism of constructed wetland[J].Ecological Journal,2006,26(8):2670-2677.
    [9]
    VYMAZAL J.Nitrogen removal in constructed wetlands with horizontal sub-surface flow:can we determine the key process[M]∕∕VYMAZAL J.Nutrient cycling and retention in natural and constructed wetlands. Leiden:Backhuys Publishers,1999:1-17.
    [10]
    李尚志,唐永琼.利用水生植物对污染水体进行生态修复[J].深圳大学学报理工版,2005,22(3):272-276.

    LI S Z,TANG Y Q.Ecological restoration of polluted water bodies by using hydrophyte[J].Journal of Shenzhen University(Science and Engineering), 2005,22(3):272-276.
    [11]
    WANG J,ZHANG L Y,LU S Y,et al.Contaminant removal from low-concentration polluted river water by the bio-rack wetlands[J].Acta Scientiae Circumstantiae,2012,24(6):1006-1013.
    doi: 10.1016/S1001-0742(11)60952-2 pmid: 23505867
    [12]
    徐德福,李映雪.用于污水处理的人工湿地的基质、植物及其配置[J].湿地科学,2007,5(1):32-38.

    XU D F,LI Y X.Screen plants and substrates of the constructed wetland for treatment of wastewater[J].Wetland Science,2007,5(1):32-38.
    [13]
    成水平,况琪军,夏宜琤.香蒲、灯心草人工湿地的研究:Ⅰ.净化污水的效果[J].湖泊科学,1997,9(4):351-358.

    CHENG S P,KUANG Q J,XIA Y Z.Study on effect of purifying wastewater by artificial wetland with Cattail(Typha angustifilia),Rush(Juncus effusus)[J].Journal of Lake Sciences,1997,9(4):351-358.
    [14]
    李龙山,倪细炉,李志刚,等.5种湿地植物对生活污水净化效果研究[J].西北植物学报,2013,33(11):2292-2300.

    LI L S,NI X L,LI Z G,et al.Sewage cleaning abilities of five wetland plants[J].Acta Botanica Boreali-Occidentalia Sinica,2013,33(11):2292-2300.
    [15]
    蒙宽宏,刘延滨,张玲,等.芦苇与香蒲对水中总磷总氮净化能力研究[J].环境科学与管理,2014,39(11):38-40.

    MENG K H,LIU Y B,ZHANG L,et al.Study on purification of total phosphorus and total nitrogen in water of reeds and cattails[J].Environmental Science & Management,2014,39(11):38-40.
    [17]
    吴海明,张建,李伟江,等.人工湿地植物泌氧与污染物降解耗氧关系研究[J].环境工程学报,2010,4(9):1973-1977.

    WU H M,ZHANG J,LI W J,et al.Relationship between oxygen release from plants in constructed wetland and oxygen demand for pollutant degradation[J].Chinese Journal of Environmental Engineering,2010,4(9):1973-1977.
    [18]
    LU S Y,ZHANG P Y,CUI W H.Impact of plant harvesting on nitrogen and phosphorus removal in constructed wetlands treating agricultural region wastewater[J].International Journal of Environment & Pollution,2010,43(4):339-353.
    doi: 10.1504/IJEP.2010.036931
    [19]
    张荣社,周琪,张建,等.潜流构造湿地去除农田排水中氮的研究[J].环境科学,2003,24(4):113-116.

    ZHANG R S,ZHOU Q,ZHANG J,et al.Study on nitrogen removal treating agriculture wastewater in subsurface constructed wetland[J].Environmental Science,2003,24(4):113-116.
    [20]
    REICH P B,OLEKSYN J.Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proceedings of the National Academy of Sciences,2004,101(30):11001-11006.
    doi: 10.1073/pnas.0403588101 pmid: 15213326
    [21]
    XIE X G,DAI C C.Degradation of a model pollutant ferulic acid by the endophytic fungus Phomopsis liquidambari[J].Bioresource Technology,2015,179:35-42.
    doi: 10.1016/j.biortech.2014.11.112 pmid: 25514400
    [22]
    XIE X G,HUANG C Y,FU W Q,et al.Potential of endophytic fungus Phomopsis liquidambari for transformation and degradation of recalcitrant pollutant sinapic acid[J].Fungal Biology,2016,120(3):402.
    doi: 10.1016/j.funbio.2015.11.010 pmid: 26895869
    [23]
    XIE X G,DAI C C.Biodegradation of a model allelochemical cinnamic acid by a novel endophytic fungus Phomopsis liquidambari[J].International Biodeterioration & Biodegradation,2015,104:498-507.
    doi: 10.1016/j.ibiod.2015.08.004
    [24]
    秦华,白建峰,徐秋芳,等.丛枝菌根真菌菌丝对土壤微生物群落结构及多氯联苯降解的影响[J].土壤,2015,47(4):704-710.

    QIN H,BAI J F,XU Q F,et al.Effect of Arbuscular Mycorrhizal Fungal Hyphae on soil microbial community composition and polychlorinated biphenyls degradation[J].Soils,2015,47(4):704-710.
    [25]
    焦海华,边高鹏,崔丙健,等.石油污染盐碱土壤棉花根际微生物与石油烃降解关系[J].微生物学通报,2015, 42(8):1501-1511.

    JIAO H H,BIAN G P,CUI B J,et al.Correlation between rhizosphere microbial community of Gossypium spp. and petroleum hydrocarbon degradation in the petroleum contaminated saline-alkali soil[J].Journal of Microbiology,2015,42(8):1501-1511.
    [26]
    KEITH B,PETER G.Macropores and water flow in soils[J].Water Resources Research,1982,18(5):1311-1325.
    [27]
    GERSBERG R M,ELKINS B V,LYON S R,et al.Role of aquatic plants in wastewater treatment by artificial wetlands[J].Water Research,1986,20(3):363-368.
    doi: 10.1016/0043-1354(86)90085-0
    [28]
    ROGERS K H,BREEN P F,CHICK A J.Nitrogen removal in experimental wetland treatment systems:evidence for the role of aquatic plants[J].Research Journal of the Water Pollution Control Federation,1991,63(7):934-941.
    doi: 10.2307/25044090
    [29]
    唐述虞,吴博成.金属矿酸性废水的湿地生态工程处理研究[J].中国环境科学,1993,13(5):356-360.

    TANG S Y,WU B C.Study on the purification of acid wasterwater from metal mine using wetland ecological engineering[J].China Environmental Science,1993,13(5):356-360.
    [30]
    刘雪. 抗砷细菌及根系有机酸对砷超富集植物蜈蚣草促生及吸砷机理研究[D].南京:南京大学,2017.

    LIU X.Arsenic resistant bacteria and root organic acid promoted plant growth and arsenic uptake in As-hyperaccumulator Pteris vittata[D].Najing:Nanjing University,2017.
    [31]
    王振,张彬彬,向衡,等.垂直潜流人工湿地堵塞及其运行效果影响研究[J].中国环境科学,2015,35(8):2494-2502.

    WANG Z,ZHANG B B,XIANG H, et al.Clogging of vertical subsurface flow constructed wetland and its effects on purifying efficiency[J].China Environmental Science,2015,35(8):2494-2502.
    [32]
    聂志丹,年跃刚,金相灿,等.间歇式运行对人工湿地处理富营养化湖水的影响[J].环境工程学报,2007,1(3):1-4.

    NIE Z D,NIAN Y G,JIN X C,et al.Influence of the conditions of batch flow on treating eutrophicated water by constructed wetlands[J].Chinese Journal of Environmental Engineering,2007,1(3):1-4.
    [33]
    崔玉波,尹军,韩相奎,等.间歇式潜流人工湿地中COD、NH4+-N动态变化特征[J].环境工程,2003,21(3):62-64.

    CUI Y B,YIN J,HAN X K,et al.CODCr and NH4+-N dynamic variation characteristics in batch subsurface flow constructed wetland[J].Environmental Engineering,2003,21(3):62-64.
    [34]
    宋铁红,尹军,崔玉波.不同进水方式人工湿地除污效率对比分析[J].安全与环境工程,2005,12(3):46-48.

    SONG T H,YIN J,CUI Y B.Comparison and analysis of the different inflows and effluent ways of constructed wetland for the removal rate of wastewater treatment[J].Safety & Environmental Engineering,2005,12(3):46-48.
    [35]
    ASELLESOSORIO A,GARCIA J.Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands[J].Science of the Total Environment,2007,378(3):253.
    doi: 10.1016/j.scitotenv.2007.02.031 pmid: 17433416
    [36]
    周斌,宋新山,王宇晖,等.运行方式对潜流人工湿地氧分布及脱氮的影响[J]环境科学与技术,2013(12):110-113.

    ZHOU B,SONG X S,WANG Y H,et al.Effect of operation modes of subsurface flow constructed wetlands for spatial distribution of dissolved oxygen and nitrogen removal[J].Environmental Science & Technology,2013(12):110-113.
    [37]
    张俊朋,陆轶峰,国晓春,等.表面流湿地去除洱海缓冲带低污染水氮模拟研究[J].环境工程技术学报,2018,8(5):488-494.
    [38]
    ZHANG J P, LU Y F, GUO X C, et al.Nitrogen removal of simulated low-polluted water of Lake Erhai buffer zone by surface-flow wetland[J].Journal of Environmental Engineering Technology,2018,8(5):488-494.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(585) PDF Downloads(446) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return