Volume 7 Issue 3
May  2017
Turn off MathJax
Article Contents
ZHANG Hengliang, ZHU Tiequn, WANG Haiyan, CHU Zhaosheng, HANG Qianyu, HOU Zeying. Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland[J]. Journal of Environmental Engineering Technology, 2017, 7(3): 332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047
Citation: ZHANG Hengliang, ZHU Tiequn, WANG Haiyan, CHU Zhaosheng, HANG Qianyu, HOU Zeying. Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland[J]. Journal of Environmental Engineering Technology, 2017, 7(3): 332-339. doi: 10.3969/j.issn.1674-991X.2017.03.047

Influence of Phragmites australis carbon dosage on enhanced nitrogen removal start-up of pilot-scale surface flow constructed wetland

doi: 10.3969/j.issn.1674-991X.2017.03.047
More Information
  • Corresponding author: Haiyan WANG E-mail: wanghy@craes.org.cn
  • Received Date: 2017-01-07
  • Publish Date: 2017-05-20
  • Slow-released plant carbon, Phragmites australis pieces, was added to the surface flow constructed wetland (SFW) to enhance the denitrification nitrogen removal of the low C/N ratio agricultural runoff. The characteristics of the simulated agricultural runoff were as follows: (8.00±1.00)mg/L N O 3 - -N, (9.00±1.00)mg/L TN, (0.70±0.10)mg/L N H 4 + -N, 0.01mg/L N O 2 - -N and (1.00±0.05)mg/L TP. Three pilot-scale SFWs were designed for experiment as follows: the blank SFW without Phragmites australis pieces dosage, 1 # SFW with 1/4 areal proportion of Phragmites australis pieces to enhanced denitrification wetland and 2 # SFW with 1/2 areal proportion of Phragmites australis pieces to enhanced denitrification wetland. A 40-day start-up operation was carried out in static mode. The results showed that the N O 3 - -N removal efficiency increased gradually to 84.2%, 89.1% and 97.8% on the 18 th, 18 th and 7 th day for the blank, 1 # and 2 # SFW respectively, while their TN removal efficiency gradually increased to 75.1%, 79.4% and 90.0% on the 15 th, 15 th and 7 th day in the early stage (1-18 d). The N O 3 - -N was added to (8.00 ± 1.00) mg/L when it was almost completely consumed on the 18 th day. In the latter stage (19-40 d), the N O 3 - -N removal gradually increased to 78.0%, 92.2% and 95.8% on the 40 th, 37 th and 35 th day for the blank, 1 # and 2 # SFW respectively, while their TN removal efficiency increased gradually to 71.4%, 75.2% and 77.1% accordingly. The start-up period of SFW could be greatly shortened by adding Phragmites australis pieces as carbon source, and 2 # SFW started with the higher speed. Moreover, the N O 3 - -N and TN removal rates of 2 # SFW were also higher than those of 1 # and the blank SFWs. It was indicated that the higher-speed start-up and better nitrogen removal efficiency could be obtained for SFW with more Phragmites australis pieces carbon dosage.

     

  • loading
  • [1]
    王显丽, 姜国强, 周雯 , 等. 基于洱海水生态特征的流域最大日负荷总量控制[J]. 湖泊科学, 2016,23(2):271-280.

    WANG X L, JIANG G Q, ZHOU W , et al. TMDL of Lake Erhai based on water ecological features[J]. Lake Sciences, 2016,23(2):27l-280.
    [2]
    吴军, 崔远来, 赵树君 , 等. 沟塘湿地对农田面源污染的降解试验[J]. 水电能源科学, 2012,30(10):107-109.
    [3]
    王福田, 顾宝群, 董瑞海 . 人工湿地技术在污水处理中的应用[J]. 南水北调与水利科技, 2008,6(4):68-70.

    WANG F T, GU B Q, DONG R H . The application of constructed wetland technique for wastewater treatment[J]. South-to-North Water Transfers and Water Science & Technology, 2008,6(4):68-70.
    [4]
    丁怡, 宋新山, 严登华 . 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012,32(7):1646-1652.

    DING Y, SONG X S, YAN D H . Effect of adding carbon source extracts on nitrogen removal in constructed wetland[J]. Acta Scientiae Circumstantiae, 2012,32(7):1646-1652.
    [5]
    GERSBERG R M, ELKINS B V, COLDMAN C R . Nitrogen removal in a.pngicial wetlands[J]. Water Research, 1983,17(9):1009-1014.
    [6]
    LU S L, HU H Y, SUN Y X , et al. Effect of carbon source on the denitrification in constructed wetlands[J]. Environmental Science, 2009,21:1036-1043.
    [7]
    赵文莉, 郝文霞, 李斌 , 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014,35(3):987-994.

    ZHAO W L, HAO W X, LI B , et al. Effects of pretreatment methods on corncob as carbon source for denitrification[J]. Environmental Science, 2014,35(3):987-994.
    [8]
    刘江霞, 罗泽娇, 靳孟贵 , 等. 地下水有氧反硝化的固态有机碳源选择研究[J]. 生态环境, 2008,17(1):41-46.
    [9]
    赖才胜, 谭洪新, 罗国芝 , 等. 以聚丁二酸丁二醇酯为碳源去除水中硝酸盐及其动力学模型[J]. 农业工程学报, 2010,26(8):285-290.

    LAI C S, TAN H X, LUO G Z , et al. Kinetic model for nitrate removal from saline water using polybutylene succinate as energy source[J]. Transactions of the CSAE, 2010,26(8):285-290.
    [10]
    范振兴, 王建龙 . 利用聚乳酸作为反硝化固体碳源的研究[J]. 环境科学, 2009,30(8):2315-2319.

    FAN Z X, WANG J L . Denitrification using polylactic acid as solid carbon source[J]. Environmental Science, 2009,30(8):2315-2319.
    [11]
    PARK J B K, CRAGGS R J, SUKIAS J P S . Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source[J]. Bioresource Technology, 2008,99(8):2711-2716.
    [12]
    丁怡, 宋新山, 严登华 , 等. 补充碳源提取液对人工湿地脱氮作用的影响[J]. 环境科学学报, 2012,32(7):1646-1652.

    DING Y, SONG X S, YAN D H , et al. Effect of adding carbon source extracts on nitrogen removal in constructed wetland[J]. Acta Scientiae Circumstantantiae, 2012,32(7):1646-1652.
    [13]
    常洋, 王彤, 王海燕 , 等. 芦苇碳源-表面流人工湿地对农田退水脱氮的长期效能研究[J]. 环境工程技术学报, 2016,6(5):453-461.

    CHANG Y, WANG T, WANG H Y , et al. The long-term nitrogen removal efficiency from agricultural runoff in Phragmites australis packed surface flow constructed[J]. Journal of Environmental Engineering Technology, 2016,6(5):453-461.
    [14]
    国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002.
    [15]
    INGERSOLL T L, BAKER LAWRENCE A . Nitrate removal in wetland microcosms[J]. Water Research, 1998,32(3):667-684.
    [16]
    MAGASANIK B . Catabolite repression[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1961,26:249-256.
    [17]
    魏星, 朱伟, 赵联芳 , 等. 植物秸秆作补充碳源对人工湿地脱氮效果的影响[J]. 湖泊科学, 2010,22(6):916-922.

    WEI X, ZHU W, ZHAO L F , et al. Effect of the carbon source of plant straw supplement in constructed a.pngicial wetland on nitrogen removal[J]. Lake Sciences, 2010,22(6):916-922.
    [18]
    毕东苏, 郭小品 . 厌氧、缺氧、好氧环境下富磷剩余污泥的释磷机制[J]. 环境科学研究, 2009,25(5):540-543.

    BI D S, GUO X P . Mechanism of phosphorus release of phosphorus-rich waste activated sludge under anaerobic,anoxic and aerobic conditions[J]. Research of Environmental Sciences, 2009,25(5):540-543.
    [19]
    黄中子, 吴晓芙, 赵芳 , 等. 红壤对磷的吸附特性及其影响因素研究[J]. 中国给水排水, 2009,25(21):91-94.

    HUANG Z Z, WU X F, ZHAO F , et al. Phosphorus adsorption characteristics of red soil and its influencing factors[J]. China Water and Waste Water, 2009,25(21):91-94.
    [20]
    SHIGEO M . Microbiological controlling of fermented vegetables[J]. Nippon Shokuhin Kagaku Kaishi, 1997,44(1):1-9.
    [21]
    亓鹏玉, 刘金明 . 挺水植物芦苇的腐解对水体水质的影响[J]. 环境工程技术学报, 2016,6(6):591-599.

    QI P Y, LIU J M . The influence of bulrush litter decomposition on water quality[J]. Journal of Environmental Engineering Technology, 2016,6(6):591-599.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(1093) PDF Downloads(1020) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return