Volume 10 Issue 3
May  2020
Turn off MathJax
Article Contents
ZHAO Yuanzhe, DONG Weiyang, WANG Haiyan, CHU Zhaosheng, YAN Guokai, CHANG Yang, WANG Huan, LING Yu, LI Congyu. Study on advanced nitrogen removal efficiency of Arundo donax-gravel A/O biofilter for rural sewage treatment[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 424-432. doi: 10.12153/j.issn.1674-991X.20190153
Citation: ZHAO Yuanzhe, DONG Weiyang, WANG Haiyan, CHU Zhaosheng, YAN Guokai, CHANG Yang, WANG Huan, LING Yu, LI Congyu. Study on advanced nitrogen removal efficiency of Arundo donax-gravel A/O biofilter for rural sewage treatment[J]. Journal of Environmental Engineering Technology, 2020, 10(3): 424-432. doi: 10.12153/j.issn.1674-991X.20190153

Study on advanced nitrogen removal efficiency of Arundo donax-gravel A/O biofilter for rural sewage treatment

doi: 10.12153/j.issn.1674-991X.20190153
More Information
  • Corresponding author: WANG Haiyan E-mail: wanghy@craes.org.cn
  • Received Date: 2019-09-01
  • Publish Date: 2020-05-20
  • Rural sewage mixed with rainwater always has the characteristics of low pollution and low carbon-nitrogen ratio. Due to the lack of carbon source, the total nitrogen (TN) is difficult to remove and cannot meet the discharge value when rural sewage is treated by biological method. The broken Arundo donax pieces were used as the filter media and carbon source for the anoxic column of the anoxic/oxic (A/O) biofilter (2 #) to enhance the nitrogen removal for rural sewage, and the gravel-filling A/O biofilter (1#) was set up as the control, in order to study the nitrogen removal enhancement of Arundo donax. The denitrifying microbial communities in the system were also analyzed by the scanning electron microscopy (SEM) and real-time fluorescence quantitative polymerase chain reaction (qPCR). The results showed: when the influent CODCr, ammonium ( NH 4 + -N), TN and phosphate ( PO 4 3 - -P) concentrations were (79.47±14.21), (34.49±2.08), (34.73±3.87)and (2.38±0.46) mg/L, respectively, their removal rates of 1# and 2# biofilters were 88%±7% and 86%±6%, 90%±2% and 97%±7%, 38%±13% and 65%±9%, 27%±13% and 40%±18% , respectively, at the 10 h hydraulic retention time. The biofilter with Arundo donax as the anoxic column filter media could significantly enhance the removal rates of NH 4 + -N, TN and PO 4 3 -P of A/O biofilter. The microorganisms on 1# and 2# biofilters anoxic column medias were mainly composed of short bacilli, and the abundance of denitrification genes and anaerobic ammonium oxidation (ANAMMOX) genes in 2# anoxic column was higher than those in 1# anoxic column.

     

  • loading
  • [1]
    王丽丽, 赵林, 谭欣 , 等. 不同碳源及其碳氮比对反硝化过程的影响[J]. 环境保护科学, 2004,30(1):15-18.

    WANG L L, ZHAO L, TAN X , et al. Influence of different carbon source and ratio of carbon and nitrogen for water denitrification[J]. Environmental Protection Science, 2004,30(1):15-18.
    [2]
    SHAO M Y, GUO L, SHE Z L , et al. Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source[J]. Environmental Science and Pollution Research, 2019,26(5):4633-4644.
    doi: 10.1007/s11356-018-3944-4 pmid: 30565112
    [3]
    GARCIA-MONTIEL D C, MELILLO J M, STEUDLER P A , et al. Carbon limitations to nitrous oxide emissions in a humid tropical forest of the Brazilian Amazon[J]. Biology & Fertility of Soils, 2003,38(5):267-272.
    [4]
    FLEMING-SINGER M S, HORNE A I . Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification[J]. Environmental Science & Technology, 2002,36(6):1231.
    doi: 10.1021/es010967i pmid: 11944674
    [5]
    佘丽华, 贺锋, 徐栋 , 等. 碳源调控下复合垂直流人工湿地脱氮研究[J]. 环境科学, 2009,30(11):3300-3305.
    pmid: 20063744

    SHE L H, HE F, XU D , et al. Nitrogen removal under the condition of carbon source supplement in integrated vertical-flow constructed wetland[J]. Environmental Science, 2009,30(11):3300-3305. pmid: 20063744
    [6]
    HUME N P, FLEMING M S, HORNE A J . Plant carbohydrate limitation on nitrate reduction in wetland microcosms[J]. Water Research, 2002,36(3):577-584.
    doi: 10.1016/s0043-1354(01)00276-7 pmid: 11827319
    [7]
    YUE W, YI C, NAN Z , et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010,101(19):7286-7292.
    doi: 10.1016/j.biortech.2010.04.068 pmid: 20478703
    [8]
    刘玉环, 阮榕生, 蒋启海 , 等. 木质纤维素及其组分转化木材胶粘剂的发展趋势[J]. 世界林业研究, 2006,19(5):49-53.

    LIU Y H, RUAN R S, JIANG Q H , et al. Wood adhesives derived from lignocellulosics:history and future[J]. World Forestry Research, 2006,19(5):49-53.
    [9]
    BOUSSAID F, MARTIN G, MORVAN J , et al. Denitrification in-situ of groundwaters with solid carbon matter[J]. Environmental Science & Technology Letters, 1988,9(8):803-816.
    doi: 10.1021/es60107a602
    [10]
    SOARES M I M, ABELIOVICH A . Wheat straw as substrate for water denitrification[J]. Water Research, 1998,32(12):3790-3794.
    [11]
    JIN Z F, CHEN Y X, NORIO O . Denitrification of groundwater using cotton as energy source[J]. Water Science & Technology, 1996,34(1/2):379-385.
    doi: 10.1016/j.biotechadv.2016.07.001 pmid: 27396522
    [12]
    VOLOKITA M, BELKIN S, ABELIOVICH A , et al. Biological denitrification of drinking water using newspaper[J]. Water Research, 1996,30(4):965-971.
    doi: 10.1016/0043-1354(95)00242-1
    [13]
    SCHIPPER L A, VOJVODIĆ-VUKOVIĆ M . Nitrate removal from groundwater and denitrification rates in a porous treatment wall amended with sawdust [J]. Ecological Engineering, 2000,14(3):269-278.
    doi: 10.1016/S0925-8574(99)00002-6
    [14]
    SALILING W J B, WESTERMAN P W, LOSORDO T M . Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations[J]. Aquacultural Engineering, 2007,37(3):222-233.
    doi: 10.1016/j.aquaeng.2007.06.003
    [15]
    丁绍兰, 封香香, 谢林花 . 沸石-核桃壳曝气生物滤池去除废水中氨氮的研究[J]. 工业水处理, 2017,37(5):45-49.

    DING S L, FENG X X, XIE L H . Research on the removal of ammonia nitrogen from wastewater by zeolite and walnut combined fillers of the biological aerated filter[J]. Industrial Water Treatment, 2017,37(5):45-49.
    [16]
    LI L, YAN G K, WANG H Y , et al. Denitrification and microbial community in MBBR using A.donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment[J]. Journal of Environmental Sciences, 2019,84:133-143.
    doi: 10.1016/j.jes.2019.04.030 pmid: 31284905
    [17]
    丁绍兰, 王娟娟, 谢林花 . 核桃壳、陶粒曝气生物滤池反冲洗特性的研究[J]. 环境污染与防治, 2017,39(8):841-844.

    DING S L, WANG J J, XIE L H . Walnut shell and ceramsite backwashing performance investigation in biological aerated filters[J]. Environmental Pollution and Control, 2017,39(8):841-844.
    [18]
    谢家仪, 董光军, 刘振英 . 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 2005,24(4):440.

    XIE J Y, DONG G J, LIU Z Y . Microbial sample preparation methods by scanning electron microscope[J]. Journal of Chinese Electron Microscopy Society, 2005,24(4):440.
    [19]
    赵文莉, 郝瑞霞, 李斌 , 等. 预处理方法对玉米芯作为反硝化固体碳源的影响[J]. 环境科学, 2014,35(3):987-994.

    ZHAO W L, HAO R X, LI B , et al. Effects of pretreatment methods on corncob as carbon source for denitrification[J]. Environmental Science, 2014,35(3):987-994.
    [20]
    MOSIER N, WYMAN C, DALE B , et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresource Technology, 2005,96(6):673-686.
    doi: 10.1016/j.biortech.2004.06.025 pmid: 15588770
    [21]
    李晓崴, 贾亚红, 李冰 , 等. 人工湿地植物缓释碳源的预处理方式及释碳性能研究[J]. 水处理技术, 2013,39(12):46-48.

    LI X W, JIA Y H, LI B , et al. Research on pretreatment methods and carbon releasing property of constructed wetland plant as slow-releasing carbon source[J]. Water Treatment Technology, 2013,39(12):46-48.
    [22]
    熊家晴, 孙建民, 郑于聪 , 等. 植物固体碳源添加对人工湿地脱氮效果的影响[J]. 工业水处理, 2018,38(9):41-44.

    XIONG J Q, SUN J M, ZHENG Y C , et al. Influences of solid plant carbon source addition on the denitrification effect in constructed wetland[J]. Industrial Water Treatment, 2018,38(9):41-44.
    [23]
    钟胜强, 杨扬, 陶然 , 等. 5种植物材料的水解释碳性能及反硝化效率[J]. 环境工程学报, 2014,8(5):1817-1824.

    ZHONG S Q, YANG Y, TAO R , et al. Carbon releasing characteristics and denitrification effects of five plant materials[J]. Chinese Journal of Environmental Engineering, 2014,8(5):1817-1824.
    [24]
    邵留, 徐祖信, 王晟 , 等. 新型反硝化固体碳源释碳性能研究[J]. 环境科学, 2011,32(8):2323-2327.

    SHAO L, XU Z X, WANG S , et al. Performance of new solid carbon source materials for denitrification[J]. Environmental Science, 2011,32(8):2323-2327.
    [25]
    杨玉婷, 何小娟, 苏跃龙 , 等. 外加植物碳源强化人工湿地脱氮的研究进展[J]. 水处理技术, 2015,41(5):1-4.

    YANG Y T, HE X J, SU Y L , et al. Research progress in the enhancement of nitrogen removal using plant biomass as extra carbon source in constructed wetlands[J]. Water Treatment technology, 2015,41(5):1-4.
    [26]
    向衡, 韩芸, 刘琳 , 等. 用于河道水反硝化脱氮补充碳源选择研究[J]. 水处理技术, 2013,39(5):64-68.

    XIANG H, HAN Y, LIU L , et al. Selection of carbon sources for biological denitrification of riverway water[J]. Water Treatment Technology, 2013,39(5):64-68.
    [27]
    国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838—2002[S/OL]. (2019-10-10)[2019-04-06]. http://www.shqp.gov.cn/env/hjbz/20191010/566500.html.
    [28]
    刘少敏, 储磊, 朱敬林 . 固定化硝化细菌去除生活污水中的氨氮[J]. 环境工程学报, 2014,8(10):4261-4266.

    LIU S M, CHU L, ZHU J L . Removal of ammonia nitrogen from sewage by immobilization nitrification bacteria[J]. Chinese Journal of Environmental Engineering, 2014,8(10):4261-4266.
    [29]
    国家环境保护总局, 国家质量监督检验检疫总局. 城镇污水处理厂污染物排放标准:GB 18918—2002[S/OL]. (2018-10-27)[2019-04-06]. https://wenku.baidu.com/view/e77081d564ce0508763231126edb6f1aff00713a.html.
    [30]
    余波, 江传春, 陈婷婷 , 等. 新型一体式生物流化床-生物滤池处理低C/N废水研究[J]. 环境科学与技术, 2014(4):171-174.

    YU B, JIANG C C, CHEN T T , et al. Study on a novel integrated biological fluidized-bed-biofilter for treatment of wastewater of low C/N[J]. Environmental Science & Technology, 2014(4):171-174.
    [31]
    孙雅丽, 张国臣, 阎中 , 等. 以腐朽木为碳源去除废水中硝酸盐氮的研究[J]. 环境科学, 2010,31(6):1494-1498.

    SUN Y L, ZHANG G C, YAN Z , et al. Removing nitrate-nitrogen from wastewater using rotten wood as carbon source[J]. Environmental Science, 2010,31(6):1494-1498.
    [32]
    SHANABLEH A, HIJAZI A . Treatment of simulated aquaculture water using biofilters subjected to aeration/non-aeration cycles[J]. Water Science & Technology, 1998,38(8/9):223-231.
    [33]
    MORGENROTH E, WILDERER P A . Controlled biomass removal:the key parameter to achieve enhanced biological phosphorus removal in biofilm systems[J]. Water Science & Technology, 1999,39(7):33-40.
    [34]
    FERRERA I, SÁNCHEZ O . Insights into microbial diversity in wastewater treatment systems:how far have we come[J]. Biotechnology Advances, 2016,34(5):790-802.
    doi: 10.1016/j.biotechadv.2016.04.003 pmid: 27071535
    [35]
    KIM J M, LEE H J, LEE D S , et al. Characterization of the denitrification-associated phosphorus uptake properties of “Candidatus Accumulibacter phosphatis”clades in sludge subjected to enhanced biological phosphorus removal[J]. Applied & Environmental Microbiology, 2013,79(6):1969-1979.
    doi: 10.1128/AEM.03464-12 pmid: 23335771
    [36]
    赵玉华, 韩敏 . 有机物含量及碳磷比对生物接触氧化法除磷效果的影响[J]. 辽宁化工, 2008,37(1):4-7.

    ZHAO Y H, HAN M . Influence of CODCr on phosphorous removal of batch biological contact oxidation reactor[J]. Liaoning Chemical Industry, 2008,37(1):4-7.
    [37]
    方晶晶, 马传明, 刘存富 . 反硝化细菌研究进展[J]. 环境科学与技术, 2010(增刊1):206-210.

    FANG J J, MA C M, LIU C F . The advance of study on denitrifying bacteria[J]. Environmental Science & Technology, 2010(Suppl 1):206-210.
    [38]
    刘秀红, 甘一萍, 杨庆 , 等. 碳源对反硝化生物滤池系统运行及微生物种群影响[J]. 水处理技术, 2013,39(11):36-40.

    LIU X H, GAN Y P, YANG Q , et al. Effects of carbon source types on the operation and nitrifying microbial community of denitrifying biofilter for advanced nitrogen removal[J]. Water Treatment Technology, 2013,39(11):36-40.
    [39]
    SHEN Z, ZHOU Y, HU J , et al. Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support[J]. Journal of Hazardous Materials, 2013, 250/251(8):431-438.
    [40]
    李莉, 闫国凯, 王海燕 , 等. 底物浓度对反硝化MBBR处理反渗透浓水脱氮效能及脱氮基因的影响[J]. 环境工程技术学报, 2019,9(4):375-383.

    LI L, YAN G K, WANG H Y , et al. Influence of substrate concentration on the nitrogen removal and relative genes of denitrifying MBBR for the treatment of reverse osmosis concentrate[J]. Journal of Environmental Engineering Technology, 2019,9(4):375-383.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(534) PDF Downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return