Volume 9 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
LI Li, YAN Guokai, WANG Haiyan, LING Yu, ZHAO Yuanzhe, WANG Huan. Influence of substrate concentration on the nitrogen removal and relative genes of denitrifying MBBR for the treatment of reverse osmosis concentrate[J]. Journal of Environmental Engineering Technology, 2019, 9(4): 375-383. doi: 10.12153/j.issn.1674-991X.2019.04.260
Citation: LI Li, YAN Guokai, WANG Haiyan, LING Yu, ZHAO Yuanzhe, WANG Huan. Influence of substrate concentration on the nitrogen removal and relative genes of denitrifying MBBR for the treatment of reverse osmosis concentrate[J]. Journal of Environmental Engineering Technology, 2019, 9(4): 375-383. doi: 10.12153/j.issn.1674-991X.2019.04.260

Influence of substrate concentration on the nitrogen removal and relative genes of denitrifying MBBR for the treatment of reverse osmosis concentrate

doi: 10.12153/j.issn.1674-991X.2019.04.260
More Information
  • Corresponding author: Haiyan WANG E-mail: wanghy@craes.org.cn
  • Received Date: 2019-04-20
  • Publish Date: 2019-07-20
  • Denitrifying MBBR was used for the treatment of reverse osmosis concentrate with high TN and N O x - -N (N O 3 - -N and N O 2 - -N) concentrations, which was generated from Dalton Filtration Reverse Osmosis (DFRO) unit in the high-quality water reclamation process of wastewater treatment plant effluent. The variation of denitrifying MBBR efficiency and the copy number of nitrogen removal genes were studied extensively under four different substrate concentrations. The results show that when the influent N O 3 - -N and TN increased within the range of (8.70±6.34)-(24.23±8.69) and (28.43±5.69)-(44.10±7.37) mg/L, respectively, the N O 3 - -N and TN removal ratios remained stable with the increase of removal rates, but the N O 3 - -N and TN removal rates increased, while the N O 2 - -N removal ratios and rates decreased. The N O 3 - -N and TN removal ratios and rates decreased when the influent N O 2 - -N concentration increased within the range of (10.94±8.51)-(20.94±5.78) mg/L, while the N O 2 - -N removal ratios and rates increased. The biofilm on denitrifying MBBR carriers mainly consisted of cocci, bacillus and filamentous bacteria. The copy numbers of nitrogen removal genes in carrier biofilm and suspended sludge increased with the increase of influent N O 3 - -N and TN concentration, and the copy numbers of nirK, nirS and Anammox genes also increased with the increase of influent N O 2 - -N concentration.

     

  • loading
  • [1]
    ΦDEGAARD H, MENDE U, SKJERPING E O , et al. Compact tertiary treatment based on the combination of MBBR and contained hollow fibre UF-membranes[J]. Desalination and Water Treatment, 2012,42(1/2/3):80-86.
    [2]
    RUSTEN B, HEM L J, ΦDEGAARD H . Nitrogen removal from dilute wastewater in cold climate using moving-bed biofilm reactors[J]. Water Environment Research, 1995,67(1):65-74.
    doi: 10.2175/106143095X131204
    [3]
    LABELLE M A, JUTEAU P, JOLICOEUR M , et al. Seawater denitrification in a closed mesocosm by a submerged moving bed biofilm reactor[J]. Water Research, 2005,39(14):3409-3417.
    doi: 10.1016/j.watres.2005.06.001
    [4]
    ΦDEGAARD H . Innovations in wastewater treatment:the moving bed biofilm process[J]. Water Science Technology, 2006,53(9):17-33.
    [5]
    杨岚, 彭永臻, 李健伟 , 等. 缺氧MBBR耦合部分厌氧氨氧化强化城市生活污水深度脱氮[J/OL]. 环境科学, 2019[ 2019-04-11]. https://doi.org/10.13227/j.hjkx. 201901015.

    YANG L, PENG Y Z, LI J W , et al. Advanced denitrification from municipal wastewater achieved via partial ANAMMOX in anoxic MBBR[J/OL]. Environmental Science, 2019[ 2019-04-11]. https://doi.org/10.13227/j.hjkx. 201901015.
    [6]
    苑泉, 王海燕, 刘凯 , 等. 污水厂尾水MBBR反硝化深度脱氮填料比较[J]. 环境科学学报, 2015,35(3):713-721.

    YUAN Q, WANG H Y, LIU K , et al. Comparison of the MBBR denitrification carriers for advanced nitrogen removal of wastewater treatment plant effluent[J]. Acta Scientiae Circumstantiae, 2015,35(3):713-721.
    [7]
    顾夏生, 胡洪营, 文湘华 , 等. 水处理生物学[M]. 北京: 中国建筑工业出版社, 2010: 244-246.
    [8]
    杨盈盈 . 进水渗滤液总氮和BOD5/TN对填埋场反应器反硝化和厌氧氨氧化协同脱氮的影响[J]. 环境科学, 2015,36(4):1412-1416.

    YANG Y Y . Effects of total nitrogen and BOD5/TN on anaerobic ammonium oxidation-denitrification synergistic interaction of mature landfill leachate in aged refuse bioreactor[J]. Environmental Science, 2015,36(4):1412-1416.
    [9]
    康鹏亮, 黄廷林, 张海涵 , 等. 西安市典型景观水体水质及反硝化细菌种群结构[J]. 环境科学, 2017,38(12):5174-5183.

    KANG P L, HUANG T L, ZHANG H H , et al. Water quality and diversity of denitrifier community ctructure of typical scenic water bodies in Xi'an[J]. Environmental Science, 2017,38(12):5174-5183.
    [10]
    SHANNON M A, BOHN P W, ELIMELECH M , et al. Science and technology for water purification in the coming decades[J]. Nature, 2008,452(20):301-310.
    [11]
    程子芮, 姜云超, 王海燕 , 等. 二级MBBR处理城市污水高品质水再生过程产生的反渗透浓水填料最佳填充率研究[J]. 环境工程技术学报, 2017,7(3):285-292.

    CHENG Z R, JIANG Y C, WANG H Y , et al. Study on carrier optimum filling ratio of two-stage MBBR for treatment of reverse osmosis concentrate from high-quality water reclamation of WWTP effluent[J]. Journal of Environmental Engineering Technology, 2017,7(3):285-292.
    [12]
    吴迪 . MBBR在国内的工程应用与发展前景[J]. 中国给水排水, 2018,34(16):22-31.

    WU D . Application and development prospect of MBBR in China[J]. China Water & Wastewater, 2018,34(16):22-31.
    [13]
    李春梅, 王海燕, 王有乐 , 等. 液相化学处理MBBR填料对城市污水厂尾水深度脱氮的影响[J]. 环境工程技术学报, 2016,6(4):336-342.
    doi: 10.3969/j.issn.1674-991X.2016.04.050

    LI C M, WANG H Y, WANG Y L , et al. Influence of the liquid-phase chemical method modified MBBR carriers on advanced nitrogen removal of urban wastewater treatment plant effluent[J]. Journal of Environmental Engineering Technology, 2016,6(4):336-342. doi: 10.3969/j.issn.1674-991X.2016.04.050
    [14]
    国家环境保护总局. 水和废水监测分析方法[M].4版. 中国环境科学出版社, 2002.
    [15]
    谢家仪, 董光军, 刘振英 . 扫描电镜的微生物样品制备方法[J]. 电子显微学报, 2005,24(4):440.
    [16]
    NOAH F, JASON A J, RYTAS V , et al. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays[J]. Applied and Environmental Microbiology, 2005,71(7):4117-4120.
    doi: 10.1128/AEM.71.7.4117-4120.2005
    [17]
    WOUTER R L V D S, WIEBE R A, DENNIS B , et al. Startup of reactors for anoxic ammonium oxidation:experiences from the first full-scale anammox reactor in Rotterdam[J]. Water Research, 2007,41(18):4149-4163.
    doi: 10.1016/j.watres.2007.03.044
    [18]
    KIM Y M, LEE D S, PARK C , et al. Effects of free cyanide on microbial communities and biological carbon and nitrogen removal performance in the industrial activated sludge process[J]. Water Research, 2011,45(3):1267-1279.
    doi: 10.1016/j.watres.2010.10.003
    [19]
    SATOSHI I, NAOAKI A, SHIGETO O , et al. Isolation of oligotrophic denitrifiers carrying previously uncharacterized functional gene sequences[J]. Applied Environment Microbiology, 2011,77(1):338.
    doi: 10.1128/AEM.02189-10
    [20]
    STRES B, MUROVEC B . New primer combinations with comparable melting temperatures detecting highest numbers of nosZ sequences from sequence databases[J]. Acta Agriculturae Slovenica, 2009,94(2):139-142.
    [21]
    HANG Q Y, WANG H Y, CHU Z S , et al. Nitrate-rich agricultural runoff treatment by Vallisneria-sulfur based mixotrophic denitrification process[J]. Science of the Total Environment, 2017, 587/588:108-117.
    [22]
    王晖 . 硫自养反硝化结合生物活性炭技术处理硝酸氮污染水的研究[D]. 上海:上海交通大学, 2011.
    [23]
    王少坡, 彭永臻, 王淑莹 , 等. 不同硝态氮组成下反硝化过程控制参数pH变化规律[J]. 高技术通讯, 2005,15(8):91-95.

    WANG S P, PENG Y Z, WANG S Y , et al. Effect of proportion of nitrate and nitrite on pH profiles during denitrification[J]. High Technology Letters, 2005,15(8):91-95.
    [24]
    赵樑, 倪伟敏, 贾秀英 , 等. 初始pH值对废水反硝化脱氮的影响[J]. 杭州师范大学学报(自然科学版), 2014,13(6):616-622.
    [25]
    王亚宜, 王淑莹, 彭永臻 . MLSS、pH及N$O^{-}_{2}$-N对反硝化除磷的影响 [J]. 中国给水排水, 2005,21(7):47-51.

    WANG Y Y, WANG S Y, PENG Y Z . Influence of MLSS,pH,and N$O^{-}_{2}$-N concentration on denitrifying phosphorus removal [J]. China Water & Wastewater, 2005,21(7):47-51.
    [26]
    厉巍, 郑平, 谢作甫 , 等. 反硝化过程特性探析[J]. 科技通报, 2013,29(11):205-210.

    LI W, ZHENG P, XIE Z F , et al. Characteristics of denitrification process[J]. Bulletin of Science and Technology, 2013,29(11):205-210.
    [27]
    LI W, SHAN X Y, WANG Z Y , et al. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system:performance,microflora and enzymatic activities[J]. Water Research, 2016,88:758-765.
    doi: 10.1016/j.watres.2015.11.003
    [28]
    周明俊, 毛天广, 吴博 , 等. 厌氧氨氧化与反硝化耦合启动影响因素[J]. 供水技术, 2018,12(4):43-48.

    ZHOU M J, MAO T G, WU B , et al. Factors influencing the coupling start-up of ANAMMOX and denitrification[J]. Water Technology, 2018,12(4):43-48.
    [29]
    李亚峰, 王欣, 高颖 . 有机物、亚硝酸盐和pH值对反硝化脱氮除磷的影响[J]. 沈阳建筑大学学报(自然科学版), 2013,29(3):531-537.

    LI Y F, WANG X, GAO Y . Study on effects of different organic matter,nitrite and pH for denitrification nitrogen and phosphorus removal[J]. Journal of Shenyang Jianzhu University(Natural Science), 2013,29(3):531-537.
    [30]
    王亚宜, 彭永臻, 王淑莹 , 等. 碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J]. 环境科学, 2004,25(4):54-58.

    WANG Y Y, PENG Y Z, WANG S Y , et al. Effect of carbon source and nitrate concentration on denitrifying dephosphorus removal and variation of ORP[J]. Environmental Science, 2004,25(4):54-58.
    [31]
    方晶晶, 马传明, 刘存富 . 反硝化细菌研究进展[J]. 环境科学与技术, 2010,33(增刊1):206-210.

    FANG J J, MA C M, LIU C F . The advance of study on denitrifying Bacteria[J]. Environmental Science & Technology, 2010,33(Suppl 1):206-210.
    [32]
    CHEN Y, WEN Y, ZHOU Q , et al. Effects of plant biomass on denitrifying genes in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2014,157(2):341-345.
    doi: 10.1016/j.biortech.2014.01.137
    [33]
    郑平, 张蕾 . 厌氧氨氧化菌的特性与分类[J]. 浙江大学学报(农业与生命科学版), 2009,35(5):473-481.

    ZHENG P, ZHANG L . Characterization and classification of anaerobic ammonium oxidation(anammox)bacteria[J]. Jounarl of Zhejiang University(Agriculture & Life Science), 2009,35(5):473-481.
    [34]
    BRAKER G, ZHOU J Z, WU L Y , et al. Nitrite reductase genes(nirK and nirS)as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities[J]. Applied Environmental Microbiology, 2000,66(5):2096-2104.
    doi: 10.1128/AEM.66.5.2096-2104.2000
    [35]
    MIAO Y, LIAO R, ZHANG X X , et al. Metagenomic insights into salinity effect on diversity and abundance of denitrifying bacteria and genes in an expanded granular sludge bed reactor treating high-nitrate wastewater[J]. Chemical Engineering Journal, 2015,277:116-123.
    doi: 10.1016/j.cej.2015.04.125
    [36]
    TORRESI E, GÜLAY A, POLESEL F , et al. Reactor staging influences microbial community composition and diversity of denitrifying MBBRs-implications on pharmaceutical removal[J]. Water Research, 2018,138:333-345.
    doi: 10.1016/j.watres.2018.03.014
    [37]
    WEI Z, JI G . Quantitative response relationships between nitrogen transformation rates and nitrogen functional genes in a tidal flow constructed wetland under C/N ratio constraints[J]. Water Research, 2014,64(7):32-41.
    doi: 10.1016/j.watres.2014.06.035
    [38]
    辛明秀, 赵颖, 周军 , 等. 反硝化细菌在污水脱氮中的作用[J]. 微生物学通报, 2007,34(4):773-776.

    XIN M X, ZHAO Y, ZHOU J , et al. The application of denitrifying bacteria in denitrification of wastewater[J]. Microbiology China, 2007,34(4):773-776.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(465) PDF Downloads(138) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return