Volume 9 Issue 3
May  2019
Turn off MathJax
Article Contents
WANG Xiaoliu, LIU Wenting, WANG Xiaoming, WANG Yibo. Nanofiltration membrane performance during softening process of simulated brackish groundwater in the Huang-Huai region[J]. Journal of Environmental Engineering Technology, 2019, 9(3): 269-274. doi: 10.12153/j.issn.1674-991X.2019.01.090
Citation: WANG Xiaoliu, LIU Wenting, WANG Xiaoming, WANG Yibo. Nanofiltration membrane performance during softening process of simulated brackish groundwater in the Huang-Huai region[J]. Journal of Environmental Engineering Technology, 2019, 9(3): 269-274. doi: 10.12153/j.issn.1674-991X.2019.01.090

Nanofiltration membrane performance during softening process of simulated brackish groundwater in the Huang-Huai region

doi: 10.12153/j.issn.1674-991X.2019.01.090
  • Received Date: 2018-09-04
  • Publish Date: 2019-05-20
  • Brackish water, which typically represented the water quality in the Huang-Huai region along the junction of the north China piedmont alluvial plain and central alluvial plain, was simulated and used as feed water to run a nanofiltration (NF) membrane system. Bench-scale experiments were carried out to evaluate NF softening separating performance. The influences of transmembrane pressure (0.6-2.1 MPa), inlet tangential flow velocity (0.09-0.38 m/s) and feedwater temperature (7-35 ℃) on the softening efficiencies of NF membrane were investigated. The results revealed that NF system produced a highest flux of 52.04 L/(m 2·h) with Ca 2+, Mg 2+, $CO_{3}^{2-}$ and $SO_{4}^{2-}$ rejection of 44.13%, 73.72%, 81.05% and 99.13%, respectively, under the optimal operating conditions of transmembrane pressure at 1.2 MPa, inlet tangential flow velocity at 0.28 m/s and feedwater temperature at 15 ℃. Under the optimal operating conditions, NF membrane achieved the highest softening performance with 53.31% of the total hardness removal efficiency. Additionally, pH values of NF permeate decreased while pH of NF retentate increased gradually with increasing of transmembrane pressure, inlet tangential flow velocity and decreasing of feedwater temperature within the testing scope.

     

  • loading
  • [1]
    KHANZADA N K, KHAN S J, DAVIES P A . Performance evaluation of reverse osmosis (RO) pre-treatment technologies for in-land brackish water treatment[J]. Desalination, 2017,406(1):44-50.
    doi: 10.1016/j.desal.2016.06.030
    [2]
    宋跃飞, 苏现伐, 李铁梅 , 等. 苦咸水淡化中膜面结垢预测及防垢进展[J]. 应用化学, 2014,31(12):1368-1377.
    doi: 10.3724/SP.J.1095.2014.40095

    SONG Y F, SU X F, LI T M , et al. Progress on investigation and application of membrane scaling potential prediction and control techniques in brackish water desalination process[J]. Chinese Journal of Applied Chemistry, 2014,31(12):1368-1377. doi: 10.3724/SP.J.1095.2014.40095
    [3]
    SAITUA H, GIL R, PADILLA A P . Experimental investigation on arsenic removal with a nanofiltration pilot plant from naturally contaminated groundwater[J]. Desalination, 2011,274(1/2/3):1-6.
    doi: 10.1016/j.desal.2011.02.044
    [4]
    BADRUZZAMAN M, SUBRAMANI A, CAROLIS J D , et al. Impacts of silica on the sustainable productivity of reverse osmosis membranes treating low-salinity brackish groundwater[J]. Desalination, 2011,279(3):210-218.
    doi: 10.1016/j.desal.2011.06.013
    [5]
    COMERTON A M, ANDREWS R C, BAGLEY D M . The influence of natural organic matter and cations on fouled nanofiltration membrane effective molecular weight cut-off[J]. Journal of Membrane Science, 2009,327(1/2):155-163.
    doi: 10.1016/j.memsci.2008.11.013
    [6]
    ROHANI R, HYLAND M, PATTERSON D . A refined one-filtration method for aqueous based nanofiltration and ultrafiltration membrane molecular weight cut-off determination using polyethylene glycols[J]. Journal of Membrane Science, 2011,382(1):278-290.
    doi: 10.1016/j.memsci.2011.08.023
    [7]
    LLENAS L, RIBERA G, ROVIRA M , et al. Selection of nanofiltration membranes as pretreatment for scaling prevention in SWRO using real seawater[J]. Desalination and Water Treatment, 2013,51(4/5/6):930-935.
    doi: 10.1080/19443994.2012.714578
    [8]
    PONTIE M, DERAUW J S, PLANTIER S , et al. Seawater desalination:nanofiltration-a substitute for reverse osmosis[J]. Desalination and Water Treatment, 2013,51(1/2/3):485-494.
    doi: 10.1080/19443994.2012.714594
    [9]
    WANG D, WANG X, TOMI Y , et al. Modeling the separation performance of nanofiltration membranes for the mixed salts solution[J]. Journal of Membrane Science, 2006,280(3):734-743.
    doi: 10.1016/j.memsci.2006.02.032
    [10]
    FIGOLI A, CASSAON A, CRISCUOLI A , et al. Influence of operating parameters on the arsenic removal by nanofiltration[J]. Water Research, 2010,44(3):97-104.
    doi: 10.1016/j.watres.2009.09.007 pmid: 19781734
    [11]
    SONG Y, XU J, GAO C J , et al. Performance of UF-NF integrated membrane process for seawater softening[J]. Desalination, 2011,276(3):109-116.
    doi: 10.1016/j.desal.2011.03.064
    [12]
    SU B, WU T, LI Z , et al. Pilot study of seawater nanofiltration softening technology based on integrated membrane system[J]. Desalination, 2015,368(10):193-201.
    doi: 10.1016/j.desal.2015.03.012
    [13]
    江爱朋, 程文, 王剑 , 等. 全流程卷式反渗透海水淡化系统操作优化[J]. 化工学报, 2014,65(4):1333-1343.
    doi: 10.3969/j.issn.0438-1157.2014.04.025

    JIANG A P, CHENG W, WANG J , et al. Operational optimizations of full flowsheet spiral-wound seawater reverse osmosis system[J]. CIESC Journal, 2014,65(4):1333-1343. doi: 10.3969/j.issn.0438-1157.2014.04.025
    [14]
    姜周曙, 翁翔彬, 王剑 , 等. 反渗透海水淡化系统“脱盐率与产水量下降”故障树分析[J]. 化工学报, 2014,65(6):2172-2178.
    doi: 10.3969/j.issn.0438-1157.2014.06.030

    JIANG Z S, WENG X B, WANG J , et al. Fault tree analysis on decreases of desalination rate and permeate flow rate of seawater reverse osmosis desalination system[J]. CIESC Journal, 2014,65(6):2172-2178. doi: 10.3969/j.issn.0438-1157.2014.06.030
    [15]
    SHENVI S S, ISLOOR A M, ISMIL A F . A review on RO membrane technology:developments and challenges[J]. Desalination, 2015,368(1):10-26.
    doi: 10.1016/j.desal.2014.12.042
    [16]
    ZHAO L, CHANG P C Y,HO W S W .High-flux reverse osmosis membranes incorporated with hydrophilic additives for brackish water desalination[J]. Desalination, 2013,308(6):225-232.
    doi: 10.1016/j.desal.2012.07.020
    [17]
    董航, 张林, 陈欢林 , 等. 混合基质水处理膜:材料、制备与性能[J]. 化学进展, 2014,26(12):2007-2018.
    doi: 10.7536/PC140627

    DONG H, ZHANG L, CHEN H L , et al. Mixed-matrix membranes for water treatment:materials,synjournal and properties[J]. Progress Chemistry, 2014,26(12):2007-2018. doi: 10.7536/PC140627
    [18]
    ZHAO S, ZOU L, MULCAHY D . Brackish water desalination by a hybrid forward osmosis-nanofiltration system using divalent draw solute[J]. Desalination, 2012,284(12):175-181.
    doi: 10.1016/j.desal.2011.08.053
    [19]
    RYABCHIKOW B E, PANTELEEV A A, GLADUSH M G . Performance testing of seawater desalination by nanofiltration[J]. Petrol Chemistry, 2012,7(2):465-474.
    doi: 10.1134/S0965544112070122
    [20]
    KHALED W, RAJA B A, LOUBNA F , et al. Brackish groundwater treatment by nanofiltration,reverse osmosis and electrodialysis in Tunisia:performance and cost comparison[J]. Desalination, 2007,207(1):95-106.
    doi: 10.1016/j.desal.2006.03.583
    [21]
    HILAL N, ALZOUBI H . A comprehensive review of nanofiltration membranes:treatment,pretreatment,modelling,and atomic force microscopy[J]. Desalination, 2004,170(3):281-308.
    doi: 10.1016/j.desal.2004.01.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(408) PDF Downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return