Volume 9 Issue 4
Jul.  2019
Turn off MathJax
Article Contents
BIN Denghui, ZHU Xuemei, FU Haihui, HAO Yaqiong, HUANG Qifei, YANG Yanmei, YANG Ziliang. Pollution characteristics and risk of main metal pollutants in spent FCC catalysts in China[J]. Journal of Environmental Engineering Technology, 2019, 9(4): 453-459. doi: 10.12153/j.issn.1674-991X.2019.01.031
Citation: BIN Denghui, ZHU Xuemei, FU Haihui, HAO Yaqiong, HUANG Qifei, YANG Yanmei, YANG Ziliang. Pollution characteristics and risk of main metal pollutants in spent FCC catalysts in China[J]. Journal of Environmental Engineering Technology, 2019, 9(4): 453-459. doi: 10.12153/j.issn.1674-991X.2019.01.031

Pollution characteristics and risk of main metal pollutants in spent FCC catalysts in China

doi: 10.12153/j.issn.1674-991X.2019.01.031
More Information
  • Corresponding author: FU Haihui E-mail: fu_haihui123@126.com; YANG Yanmei E-mail: cqyymei@163.com
  • Received Date: 2018-11-07
  • Publish Date: 2019-07-20
  • The spent fluid catalytic cracking (FCC) catalysts generated from 19 FCC units in different regions of China were collected, the heavy metal contents and leaching concentrations analyzed, and the main metal pollutants, pollution characteristics and potential risks discussed. The results were as follows: The main metal pollutants in spent FCC catalyst were nickel, vanadium, antimony, cobalt and zinc. The total concentration and leaching concentration of main metal pollutants varied great among different facilities. The leaching concentration of nickel, vanadium and antimony were comparatively higher, which were 0.004-3.171, 0.130-39.490, 0.042-8.099 mg/L respectively. The metals leaching concentrations from spent FCC catalyst could meet the criteria to enter the landfills as hazardous waste, whilst the pH in leaching solution was too low to enter hazardous waste landfill which need pretreatment. If a pile of spent FCC catalyst were not environmentally managed but stored on ground for a long period, the antimony would be released, thus endangering the groundwater and leading to certain potential health risk. The nickel had no similar effect.

     

  • loading
  • [1]
    吴秀章 . 催化裂化对炼油厂产品结构和产品质量的影响[J]. 石化技术, 2000(2):74-78.
    [2]
    ZHANG J, SHAN H, LIU W , et al. Synergistic process for coker gas oil catalytic cracking and gasoline reformation[J]. Energy & Fuels, 2013,27(2):654-665.
    [3]
    许友好 . 我国催化裂化工艺技术进展[J]. 中国科学:化学, 2014,44(1):13-24.
    doi: 10.1360/032013-233

    XU Y H . Advance in China fluid catalytic cracking (FCC) process[J]. Scientia Sinca Chimica, 2014,44(1):13-24. doi: 10.1360/032013-233
    [4]
    容元伟, 张彪 . 催化裂化工艺技术的应用与进展[J]. 化工管理, 2017(21):74.
    [5]
    赵晓敏 . FCC废催化剂的综合回收利用[J]. 炼油技术与工程, 2017,47(4):51-55.
    [6]
    杜晓辉, 唐志诚, 张海涛 , 等. 镍钒污染对催化裂化催化剂的影响[J]. 化学工程与装备, 2011(5):1-5.

    DU X H, TANG Z C, ZHANG H T , et al. Effect of vanadium and nickel contamination on the property of FCC catalyst[J]. Chemical Engineering & Equipment, 2011(5):1-5.
    [7]
    郑文芳 . FCC催化剂中镧和铈的浸取与分离技术[D]. 西安:西北师范大学, 2014.
    [8]
    LIU X M, LI L, YANG T T , et al. Zeolite Y synthesized with FCC spent catalyst fines:particle size effect on catalytic reactions[J]. Journal of Porous Materials, 2012,19(1):133-139.
    doi: 10.1007/s10934-011-9534-1
    [9]
    GARBARINO G, RIANI P, INFANTES-MOLINA A , et al. On the detectability limits of nickel species on NiO/γ-Al2O3,catalytic materials[J]. Applied Catalysis A:General, 2016,525:180-189.
    doi: 10.1016/j.apcata.2016.07.017
    [10]
    李丹丹 . FCC废催化剂的无害化及水处理应用研究[D]. 北京:北京化工大学, 2016.
    [11]
    HE M Y . The development of catalytic cracking catalysts:acidic property related catalytic performance[J]. Catalysis Today, 2002,73(1):49-55.
    doi: 10.1016/S0920-5861(01)00517-X
    [12]
    BAYRAKTAR O, KUGLER E L . Visualization of the equilibrium FCC catalyst surface by AFM and SEM-EDS[J]. Catalysis Letters, 2003,90(3/4):155-160.
    doi: 10.1023/B:CATL.0000004110.98820.d9
    [13]
    任飞, 沙昊, 朱玉霞 . 催化裂化废催化剂上镍形态的XRD研究[J]. 石油炼制与化工, 2017,48(7):38-43.
    [14]
    王国峰 . 金属钝化剂在FCC中的应用[C]// 第十一届全国工业催化技术及应用年会论文集.北京:工业催化杂志社, 2014.
    [15]
    QUINA M J, BORDADO J C, QUINTA-FERREIRA R M . Percolation and batch leaching tests to assess release of inorganic pollutants from municipal solid waste incinerator residues[J]. Waste Management, 2011,31(2):236-245.
    doi: 10.1016/j.wasman.2010.10.015
    [16]
    刘腾, 邱兆富, 杨骥 , 等. 废FCC催化剂的形态、成分分析及环境风险评价[J]. 无机盐工业, 2016,48(11):71-74.

    LIU T, QIU Z F, YANG J , et al. Morphological,composition analysis,and environmental risks assessment of spent FCC catalysts[J]. Inorganic Chemicals Industry, 2016,48(11):71-74.
    [17]
    赵秀阁, 段小丽 . 中国人群暴露参数手册:成人卷[M]. 北京: 中国环境科学出版社, 2014.
    [18]
    Committee on the Institutional Means for Assessment of Risks to Public Health,National Research Council. Risk assessment in the federal government:managing the process[M]. Washington DC: National Academy Press, 1983.
    [19]
    环境保护部. 污染场地风险评价技术导则:HJ 25.3—2014[S]. 北京:中国环境科学出版社, 2014.
    [20]
    刘华峰, 于可利, 李金惠 , 等. 危险废物焚烧设施的环境风险评价[J]. 环境科学研究, 2005,18(增刊1):48-52.

    LIU H F, YU K L, LI J H , et al. Environment risk assessment of hazardous waste incineration[J]. Research of Environmental Sciences 2005,18(Suppl 1):48-52.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(544) PDF Downloads(148) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return