Volume 9 Issue 2
Mar.  2019
Turn off MathJax
Article Contents
LIU Jianjian, ZHAO Bingtao, SU Yaxin. Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential[J]. Journal of Environmental Engineering Technology, 2019, 9(2): 175-180. doi: 10.12153/j.issn.1674-991X.2018.11.260
Citation: LIU Jianjian, ZHAO Bingtao, SU Yaxin. Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential[J]. Journal of Environmental Engineering Technology, 2019, 9(2): 175-180. doi: 10.12153/j.issn.1674-991X.2018.11.260

Modeling of specific growth rate factors of microalgae based on constructional function method and its carbon emission reduction potential

doi: 10.12153/j.issn.1674-991X.2018.11.260
  • Received Date: 2018-08-22
  • Publish Date: 2019-03-20
  • Three key influencing factors of specific growth rate of microalgae, i.e. CO2 concentration, light intensity and nitrogen concentration were chosen, and ten kinds of univariate non-linear models used to construct a multivariate non-linear model between the three factors and the specific growth rate of microalgae by constructional function method. After the correlation parameter test of the significance P value less than 0.05 and the collinear diagnosis of VIF less than 5, the final determination coefficient (R2) of the multivariate nonlinear regression equation was 0.917, which could be used for the effective prediction of the growth rate of microalgae. On this basis, through the analysis of the effect of the equation on the three factors, it was concluded that when CO2 concentration was 5%-15%, the specific growth rate of microalgae was high, and the specific growth rate gradually increased with the increase of light intensity (45-480 μmol/(m2 ·s)) and nitrogen concentration (0-700 mg/L). The biomass yield of microalgae was predicted to be 7.2-100.2 kg/(m3 ·a) by regression model, and the absorption and fixation of CO2 by microalgae was estimated to be 7.92-183.70 kg/(m3·a).

     

  • loading
  • [1]
    CHISTI Y.Biodiesel from microalgae[J].Biotechnology Advances,2007,25(3):294-306.
    doi: 10.1016/j.biotechadv.2007.02.001
    [2]
    李健,王广策.微藻生物技术在二氧化碳减排和生物柴油生产中的应用研究进展[J].海洋科学,2011,35(7):122-129.

    LI J,WANG G C.Microalgae research advances towards CO2 reduction and biodiesel production[J].Marine Sciences,2011,35(7):122-129.
    [3]
    POZZOBON V,PERRE P.Han’s model parameters for microalgae grown under intermittent illumination:determined using particle swarm optimization[J].Journal of Theoretical Biology,2018,437:29.
    doi: 10.1016/j.jtbi.2017.10.010 pmid: 29050962
    [4]
    WANG L L,ZHAO B T,ZHANG Y X.Prediction of energy microalgae production under flue gas using response surface methodology[J].Energy Procedia,2012,16(16):1066-1071.
    doi: 10.1016/j.egypro.2012.01.170
    [5]
    BILANOVIC D,ANDARGATCHEW A,KROEGER T,et al.Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations:response surface methodology analysis[J].Energy Conversion & Management,2009,50(2):262-267.
    doi: 10.1016/j.enconman.2008.09.024
    [6]
    MASAAKI N,NORIO S,KAZOHISA M,et al.Growth of microalgae in high CO2 gas and effects of SOx and NOx[J].Applied Biochemistry & Biotechnology,1991,28/29(1):877-886.
    doi: 10.1007/BF02922657 pmid: 1929389
    [7]
    SIERRA E,ACIÉN F G,FERNÁNDEZ J M,et al.,Characterization of a flat plate photobioreactor for the production of microalgae[J].Chemical Engineering Journal,2008,138(1):136-147.
    doi: 10.1016/j.cej.2007.06.004
    [8]
    CHIU S Y,KAO C Y,CHEN C H,et al.Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor[J].Bioresource Technology,2008,99(9):3389-3396.
    doi: 10.1016/j.biortech.2007.08.013 pmid: 17904359
    [9]
    MORAIS M G D,COSTA J A V.Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixation of carbon dioxide[J].Energy Conversion & Management,2007,48(7):2169-2173.
    doi: 10.1016/j.enconman.2006.12.011
    [10]
    SUNG K D,LEE J S,SHIN C S,et al.CO2 fixation by Chlorella sp. KR1 and its cultural characteristics[J].Bioresource Technology,1999,68(3):269-273.
    doi: 10.1016/S0960-8524(98)00152-7
    [11]
    YUE L H,CHEN W G.Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae[J].Energy Conversion & Management,2005,46(11/12):1868-1876.
    doi: 10.1016/j.enconman.2004.10.010
    [12]
    MORAIS M G D,COSTA J A V.Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus, cultivated in a three-stage serial tubular photobioreactor[J].Journal of Biotechnology,2007,129(3):439-445.
    [13]
    YOSHIHARA K I,NAGASE H,EGUCHI K,et al.Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-113 cultivated in a long tubular photobioreactor[J].Journal of Fermentation & Bioengineering,1996,82(4):351-354.
    doi: 10.1016/0922-338X(96)89149-5
    [14]
    YUN Y S,PARK J M,YANG J W.Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration[J].Biotechnology Techniques,1996,10(9):713-716.
    [15]
    CHIU S Y,KAO C Y,HUANG T T,et al.Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures[J].Bioresource Technology,2011,102(19):9135.
    doi: 10.1016/j.biortech.2011.06.091 pmid: 21802285
    [16]
    ZHAO B T,SU Y X.Process effect of microalgal-carbon dioxide fixation and biomass production:a review[J].Renewable & Sustainable Energy Reviews,2014,31(2):121-132.
    doi: 10.1016/j.rser.2013.11.054
    [17]
    CHAE S R,HWANG E J,SHIN H S.Single cell protein production of Euglena gracilis and carbon dioxide fixation in an innovative photo-bioreactor[J].Bioresource Technology,2006,97(2):322-329.
    doi: 10.1016/j.biortech.2005.02.037 pmid: 16171688
    [18]
    MAEDA K,OWADA M,KIMURA N,et al.CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae[J].Energy Conversion & Management,1995,36(6/7/8/9):717-720.
    doi: 10.1016/0140-6701(96)89054-0
    [19]
    GOLDMAN J C,MANN R.Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures[J].Journal of Experimental Marine Biology & Ecology,1980,46(1):29-39.
    doi: 10.1016/0022-0981(80)90088-X
    [20]
    李奥搏,汪苹,张正洁,等.异养小球藻的筛选鉴定及其特性研究[J].环境工程技术学报,2011,1(2):131-136.

    LI A B,WANG P,ZHANG Z J,et al.Study on isolation and identification of a strain heterotrophic Chlorella and its growth characteristics[J].Journal of Environmental Engineering Technology,2011,1(2):131-136.
    [21]
    任耀宗,刘国,余红,等.草原地区河流型天然湿地对河流水体污染物去除特性[J].环境工程技术学报,2019,9(2):181-187.
    [22]
    REN Y Z, LIU G, YU H,et al.Removal characteristics of pollutants by riverine natural wetland in prairie region[J].Journal of Environmental Engineering Technology,2019,9(2):181-187.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article Views(431) PDF Downloads(202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return